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NOTATION

1. Unit means service unit or counter at which the server
is serving.

2. L.S.T. is abbreviated for Laplace-SteiltJes Transform.

3. H(x) is the distribution f~ncti.-, of service times.
Its L.S.T. is denoted by h(s) and its firat three
moments by a, p and Y respectively.

4. v.(s) denotes the L.S.T. of the distribution of
busy period of an MIGI1 queue with service time
distribution Hl(x).

5. Y(s) denotes the L.S.T. of the distributi.on of busy
period of the whole system (All the service units
considered together).

6. The convolution of two distribution functions F(x)
and G(x), 0 <x < -, is denoted by:

F*G(x) - F(x-u) dG(u)0

The m-fold convolution of F is denoted by:

(x) = F*F m'l(x)

7. U(x) is the unit distribution:

U(x) 0 if x <0
= 1 -i' x >0

8. 6 is the Kronecker delta defined by:

ii 6 ij = 0 if i /j

= 1 if = j



9. For referring the equations we use the following
convention: (n) means the n-th equation of the
present chapter and (m.n) means the n-th equation
of the m-th chapter.

i
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CHAPTER I

A SINGLE SERVER 7AIVDF QUEUE WITH

NON-ZERO SWITCHIN IN UNIT 1

1. Concepts and Definitions

In this chapter we consider a queueing process with two

service units, unit 1 and unit 2, and a single server. The

server attends to the two units alternately according to same

switching rule. A switching rule [Neuts and YaWin, 1968] is o

rule describing how the server changes from one unit to the

other. The server may change from one unit to the other either

by a non-zero switching rule or by a zero switching rule. By

a non-zero switching rule the server continues to serve in a

unl.t until some upper number of consecutive services have been

couileted and then he switched to the other unit. B a zero

switching rule the server stays in a unit until the queue in

it becomes empty and then he switches to the other unit.

In this chapter we discuss a non-zero switching rule for

unit 1 and zero switching rule for unit 2. The zero switching

rule for unit 1 is dealt in the next chapter.

We say that two units are in tandem. vhtan the output of the

first unit is the input to tne second. It is apeumed that
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customers arrive in unit 1 in accordance with a Poisson process

of density X. The input for unit 2 is those who have completed

service in unit 1.

The durations of the successive service times in units 1

and 2 are identically distributed independent positive random

variables with distribution functions HI() and H2 (")

respectively. Further the service times are independent of the

arrival times.

In the case of non-zero switching the server starts in

unit 1 at time t = 0 and continues to serve in it until he has

given k services without inter:ruption or until the queue be-

comes empty, whichever.- comes first. k is a positive integer which

we will c&a., as the switchi!& parameter. The time interval

epent without interruption in unit 1 is called a 1-task.

Similarly we define a 2-task. A 1-task followed by a 2-task

both together will be called as a cycle of tasks.

The customers who have '?:mpleted service in unit 1 queue

up in front of unit 2. The Aýerver after completing the 1-

task switches to unit 2 and %"rves there until thE queue in It

becomes empty. After finie.,i n the task in unit 2 the server

switches back to unit 7. and ý.•tinues the process.

When kul, we obtain sib. an M4G/1 queue with service

time distribution H1  H

i

,ILft -- - - w n ~ a 0-



2. DIstribution of Bsy Period

The server be3ins in unit 1 at t-O and serves between the

two units alternately according to some switching rule. The

time required for both the unite to bec~ome empty simultaneously

for the first time is called a busy period of the system.

Suppose that there is a Poisson input of density X in

unit 1 and that the service time distributions of the two units

are H1(') and H2('). Then since the distribution of busy

period does not depend upon the order in which the customers

are served (Welch (1965)3, the distribution of busy period of

the model defined above is equivalent to the distribution of

busy perind of an M/G/1 queue with input rate X and service

time distribution the con'v•lution H1 * H2 (.). Hence from the

classical results of an W/G/l queue Takacs 1962, p. 4r) that

if Y(s) is the Laplace StieltJes Transform (L.S.T.) of the

distribution of busy period then y(s) is the unique root

in the unit disk I1Z < 1 of the equation

(1) z = hl(s + X - Xz) h2(s + X - Xz),

The expected length of busy period is given by:

(2) - Y'(o+) - + if l- _ - a2 > ,

if - - c, 2-0,

I!

4 1 1J
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3. The Basic Imbedded Semi-Markov Process

and its Transition Probabilities

Macroscopically the queueing process consists of busy

periods alternating with idle periods. Each busy period

consists of a random number of alternating 1-tasks and

2-tasks. Every busy period can be decomposed into a random

number of cycles of tasks.

Here we assume that at t=O there are i > 0 customers

in unit 1 and none in unit 2. In the case i=O the process

starts with an idle period.

Let us define the sequence of random variables To, TV,

T2, ..... where To= 0 and Tn i3 the duration of the nth cycle I
of tasks, n=l,2,.... Let 6 denote the number of cuaitomers

in the system at the end of the nth cycle, n=le, .... and

It follows from the regenerative properties of the input

and service processes that the bivariate sequence of random

variables

it a Semi-Markov sequence with state space (0,],2.

We recall the definition of Semi-Markov sequence.

Consider a double sequence of random variables

k(jn,), n-0)1)2,... defined on a complete probability

space and such that :

IJ
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(M) (4) P(x° -o0 = 1,

(ii) P[J0ok]ur%, where ak >0, £ a 1, and I is the state
1kEI space

(iii) P[in-k, Xn .5 x 11 Jos ),'.',.I 'lX2,...,X.I
In = l a n -l X, nn i11

P(Jn=k, Xn <x In) = QJ1

for n=1,2 .....

then the process ((JnX_), n > 0] is called a Semi-Yarkov

sequence. The functions Qij(x), i,j=l,2.....are mass functions

which are non-decreasing and they satisfy:

Q~j(x) = 0 for x <0,

j(CO) = Pij ij=l 2'...

where (Pij) is the transition matrix of the Markov chain

n n > 0). For xAuther details of Semi-Markov sequences

we refer to Pyke (1961), ieuts (1966).

To study the transition probabilities of the Semi-Mxrkov

sequence we first define an auxiliary probab!;&.y function

Gij %x).

Let us define:

(.5a) G(O)(x Lx),

where & is the Kronecker delta and U() i.s the distribution

4egnerate at zero, For n > 1, Gl.)(x) is the probability

that, in an M fll queue of input rate X and service time

distribution HI(') the initial busy period involves at

least n services, that the n-th service is completed before

Iii
Im



time x and that at the end of the n-th service there are j

customers waiting, given that there were i customers initially.

Then for i > 1:

S(5b) G(1)i x)- 1oex Ji:i'(YJildIY

(5c) G-ij)(x) = X o (X-y)1 - - d H((-)

n > 1,

Let (i•(s) be the L.S.T. of G and:

(n)()
(6) 94  (s,z)= g g.)(s)z , jz , n >0,

j=0 I

Then:

g °)(s,z) zi

S g[g (s,) -- z- h(s+X-X) ,

where h1 () is the L.S.T. of Hl(.).

Successive Pubstitution yields:

, I.
t-
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(8a)

n+l

,-h (8+x-xz) .n • n ,h (B+X -Xz) .n , .l .

(8)1 L z z - Eh z gi (S

From the definition of G n(X) it follows that.

(9) g-n)(s,O) = 0  for i > n

Hence from (8):

"(n) n,
(io) g (,z) = J h1 (s+X-Xz) for i > n > 0

A Suilmary of Known Results

The properties of the probability functions G n(x),ij '

already known, may be summarized as follows: For proofs

of these we refer to Takacs (1960),Neut3 (1968b)

Lemma 1. 1

If Gl(x) is the distribution of busy periods for an

MOjGjl queue with input rate X and service time distribution

HI(.) and yl(s) its L.S.T., then:

_(n),s
iY(s) > 1,

n=l 10

A _ __ _
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Lemma 1.2

if YS,jsc) = (n g~(s 0) up c~<
n=l 1

then:

n=l

For w = 1., yl(s,l) = Yl(s) and then lemma '-.2 redutces

to lemma I.I.

Lemma 1.3

If Izl <i, Iu 1 1 and i > 1 then:

(13) Zg ()zj W zW-ch o-)
n=O j=l 

a

For ci = 1 one may rewrite (13) as:

i ±CO (n) j z[z -YI(s)]
(14) E . g)(s)z z + .- ,)n=O j=l ij z -z isf~-z

Lemma 1. 4

If R(s) > 0 and JI <_1 then z = y1 (s,cj) is a root of
I #

Takacm functional equation:

(15) z : vhl(S+X-\z) cI z <1

Further z = y1 (s~u) is the onpZ root of this equation in the

unit circle I:! <1 if R(s) > 0 and ju < I or R(s) > 0 and

IwI _lor R(s)_o, Iwi <and 1 Xi- <0.

I__
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Lemma 1.•

In lemma 1.4 tating L = 1 we get that for R(s) 01

z = yl(s) is a root of the equation:

(16) z = hI(s++X-XZ)

Further 0 = y1 (O) is the smallest positive real root of the

equation:

(i1) e = h1(x - xe)

and if 1- <0 then e <1 and if 1 - a • > 0 then 0=1.

From lemmas 1.4 and 1.5 it follows that:

(18) Y'(O +) i 1- >

~=TTW if 1 -X0,

(19) Y, (o+) X if l - , % > 0

If yl(Oc) = f(u) then

(20) f'(1) 1 W

if 1 X a O'

I
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() f"() ( )3 if 1-••, > 0,
(1-X a,) (1-X alX r~ 0

Now we define the transition probabilities of the Semi-

Markov sequence fy: Tn, n > 0] defined in (3) as:

S(22) Qij(x) = j, TJ <x ,

Fer i > 0 and j _0,

(23)

Q1 (x) J f • dG (u)),X(v'u) V-u)] J3 dH ( (v-u)
"v=o o U(j.): d )

(u)(v)

+ r dG )(u)e"X(v-u) [£d(v-u)lJ ,
r=i ( ')( ) 2

where H(n)(.) is the n-fold convolution of H('). The second

term on the right hand side of the above expression vanishes

for i > k.

If q.j(s) is the L.S.T. of Q j(x) and

(.4) qi(s,z) q 1. qj(8s) ýz _< 1,
J=O

then:

(25)(2) J g(k) OD -(B+X)x (X) J-V (k
(a) 1 g (k ) e (J-V). d H9, (x)

j O 0 iv (

S~o

+ Il (r)( Of &(s+]k)x £Xx d H{(r)()-4 E g (. e(x

r-i 2

for i >0 and j >0,

- .-- - 3 - - -
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(26a)
k-i

q (S'Z) = g (k) (s5 )hk (sx-x) + E (r) sO~ r~sXX
r=i

for i <k,
(k)C k

(26b) g (s,z) h2 (s+x-xz), for i > k

From (9) and (26) it follows that:

(27) k (r)¢,�(,�s f ) if i < k,(27) qi(s,0) = I; gi 80b
r=i

= 0 ifi>k k

Next we introduce the taboo probabilities , )0

defined by:

(28)

(n) (x)= +T+...+T < X, •j O for v=l, .,n-

o i)i} , n_> ,

0 (x) = 5 j X)

That is, Qý )(x) is the probability that a busy period has
0 ij

at least n cycles of tasks, that the n-th cycle ends not later

than x and wher, it does j customers are waiting, given that i

customers were in unit 1 at t=0.

From the definition it follows that:

()(x)
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and

(n 1x) ( X .(n)(x u) d Q n 1
V=1 COW

Since each cycle of tasks can have atmost k services in units

1 and 2, in the above formula v can be atmost j+k.
j)(n) Q(n).)a"

Let q(s) be the L.S.T. of oq. (1 and:

(301) 0o( (B) = r ( oqz( ,

jn=0

(30o) M w1q, s (s)

(31a) or (s,z) = F orin(s) z,
0 ij=0

(31b) a (s,z) = 'E o (s) z0 I-I 1 l, R(s) > o,
1 ~j=0O~i

Sor Iz I -e 1, R(s) .. 0,
(32-) oqn(~): -n()zj

0 1 J=O 0 ij

Then:

U _ _ _ _ *1

1~= "-
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(3 3 ) = = )i)

(n) (a) (n(1)
0 )(a) = £ qivl (S) °V

(34) (o)( iq (s,z) -- z,

•n. (sz) Z oi. ('s) qV(s,z) n > 1,
V-1

0mi (s,z) = q (s,z) + 0zm iv(s) qV(sz)V=l

Note that E q.n)(6) = m (sO) is the L.S.T. of the
n=1l 0

distribution of busy period of an MI Gl queue with a PoiIon

input of rate X and service time distribution H, * H2(.).

That is:

(35) om'(sO) = yi (S) , i >1

More properties of the taboo probabilities Q (.) are studied
0 ij

in the zero switching case.

4. The Joint Distribution of Queue length

and Virtual Waiting time

Virtual Waiting time:

The virtual waicing time at time t is defined as the

length of time a (virtual) customer arriving at t has to wait

before beginning service in unit 1. For the non-zero switching

case the virtual waiting time at time t will be denoted by

I
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jk)(t) where k is the switching parameter defined earlier.

Queue length:

The number of individuals in the system at time t still

requiring some service in unit 1 is defined as the queue length

at time t. For the non-zero switching case this quantity will

be denoted by ý(k)(t).

Let ei.(t,x) be the joint distribution of the queue length

•(k)(t) aiid virtual waiting time Ik)(t), given that at t=O

there are i > 1 customers. That is:

(36) eij(t,x) = P J(k)(t)) j 1(k)(t)<x (k)(o)

Further let for i > 1,

(37)

0j(t,x) = Ptý(k)(t)-j, 0 < (k)(t) < x, Ti

for all T E (O,t] I •(k)(o) = i}

Formula (36) can be written in terms of (37) as:

(38)
t

e i(t'x) - ý i(t'x) -olj (t - u, X) d M1 (u)

+ P (k)(t)-j, *n (k)(t)=o Z(kO) j) U(x)
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where 1ý(.) is the renewal function of the general renewal

process formed by the beginnings of busy periods,

0 for x <0
U(x) z 1 for x > 0

To obtain the equation (38), consider the event on the right

hand side of (36) which can be split into three mutually

exclusive events:

(i) The time t falls in the initial busy period,

g(k)(t) = j and 0 < Il(k)(t) < x, given that (k)( 0 ) = i.

(ii) The time t does not fall in the initial busy period but

in some other busy period which started at time u (0 < u < t)

with a single customer, ,(k)(t) = j and O <1 ik)(t) <x,

given that (k) () = i.

(iii) The server is idle at time t (that is Q (k)(t) = 0),

given that (k)(0 ) = i.

The probabilities of these three events give respectively

the three terms on the right hand side of (38).

For i > 1, let *ij(tx) be the probability that at t

the original cycle of task has not yet ended and that

(k) (t) -J, O < • (t) 5x and (k)(T)jO for &sl'TE(O,i),

gi:., that at t=O the service started in unit 1 with i

customers. Then:

t (n)(39) 0 ii(t,x) E, d£i (u tvdoux

n=-O ýl o
(u)

*1 .... . . ... . .. ..
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This formula is obtained from the fact that at time t the

server is serving in the (n+l)th cycle (n=Ol,,...) of the

initial busy period. The n-th cycle ended between u and

u+du (0 < u < t) leaving v(=l,2,... ) customers in the system.

We define the following transforms for R(s) > 0,

R(s)_0Oand Iz 1_5l:

oi * (t,S) e. sx d'~ 0i(t'x)

S e 0*o1 (t,s) dr,oij(•, -- 0

=0

•i(t,s) = e5• d • j(t,x)

=i( ,s) = e t 0ij(ts) dt,

,i(t,s) = f e 8  d ij(t,
0

r- e * (t,s) dt,

li(Gs,,)- 1: •ii(,s) z,
S-O

e - d •(t)

!0

t I
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For R(s) > 0, R(t) Ž0 and jz'j -.1, the transform

G~~)is given by:

(40)

k-1k 11 L-l2( sL[-mh sh 1 s -~X umzhl1(a)h 2(a

zh h1 (G-h l(Y-?-Xcm~zhl(s)h2(s))J

- zhl(s)-h1l'+X-kXwzh 1(s'h 2 (s))1 q,(t,cw zhl(s)h,(s))

"+ (z-l)h1(G+x-XV.,zh (s)h,(s))h (S)g k'(,

"~ F zic~,s+ ~ h)h 2 (s))ý(S)P(ý,O))]'

where c, 0 .,ý are~ th'ý, k-th roots of unity.

Proof:

The probability '~i(t~x) is given in terms of the

probabilities G kn)(u) by:
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(41.)

j t t+x t "x

(k ) e(x(tvu)

iitx E~ It div (u)

(u)(v) (vi)

(�([lj) ( k)

(VU)d )(v-v)

k-i j xt 1t+x t+x , , X(t-u) r,•t - ,'
S Z dGt (u) e Wt _U )

r O1v= ' o t
(U)(v) (vi)

"dv (v'u)d v(H " I•)'

The j obtained by assuming that the server

is performing a 2-task at t and that the previous3 1-task

consistei o±f k servicei. Tae cycle of tasks in which the

server is sering at t started with i customers in unit 1

at ticO. The 1-task ends after k services leaving h

• customers in unit 1 at time u. The number of arrivals

between times u and t is J-v so that at t there are J

II

IV dG W e
.= v•' • " i v ( . .. .) (u)(v (v]
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customers in unit 1. The services of the j customers start

after the completion of the 2-task in progress at t. Let

this 2-task end at time V. If J is a multiple of k, say mk,

where m is a positive integer, then the (virtual) customer

eneters service after the service completion of j customers

in both the units. That is, after the completion of m cycles

of tasks, each cycle consisting of k services in each unit.

If j is not a multiple of k, say mk+r (0 < r <k), then the

(virtual) customer enters service after the completion of m

cycles of tasks together with a further service completion

of r customers in unit 1. Let this service completion occur

at time V V Now we integrate and sum over all choices of

V, U, V, V .

The second term is obtained by assuming again that the

server is performing a 2-task at t and that the previous

1-task consisted of only r ( <k) services, leaving the

unit 1 empty at the end of the 1-task at time u.

The last term is obtained by assuming that the server

is performing a 1-task at t. The cycle of tasks current at

t started with i customers in unit 1 at t=0 and r (< k -1)

service completions are made before t. The last service

completion before t occurs at time u at which there are v

customers waiting in unit 1. The number of arrivals between

times u and t is J-v. Now there are J-1 customers, excepting

the customer in service, at t in unit 1. Let the customer

Lii
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who is in service at t complete his service at time v and

let the service completion of the j-1 customers occur in

unit 1 at time v1 . Finally we sum over all chcices of r,

V, U, V, V1.

Taking the transform of (41) results in:

(42)
(k[ki I-v (+-t (xt),'

§s J g•(k)()hJ(s)h2 (s)oe svoe- (+.5) dt

V: 0O 0 0

* (k)
d H (v)

k-I(r ikv
+ E-i i )(;)bIcS)hj k(s)h e( " SV sVe'("+X-s)t (Xt), dt

I r=i 
0 o

* d H(r)(v)

- (r) ()h j-(s)h2  ( s)k -sev e. s)t (dt)

r=O v=l 0 0

d H1 (v)

p



21

Hence:

(43)

ti(6sz) giv "(k)
•,=0' 0

S[Xzh1(s)t] 2-, (1t k)

E" -- .-- h2  (5)dtdH 2 (v)
j=v

k-i (r O-v v e [§+hl(S)t -]-blS J

+ E gi O E -.
r=i 0 0 J=O

h 2  (s) dt d

k-i g (r% z1 v(e(E+XS)t+ z E 9 e'Fvzv"v('(+)"et
V1 -g•r()Zb' I

r =0 v= 10 0

S [khls~]-•h2 k (s)dt dH,(V))

j=V j

Taking the summations inside the integrals is justified

by Lebesgue Dominated Convergence Theorem. In (43) to sum

the series inside the integrals we use the theorem in Appendix

A, by taking y h2 (s) 1 1 for R(s) > 0. Then:

i
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E h gS)e;)(Jmh ih (s2(5))V

vý=o

k-k
+ E Ch (''~)wh s)-h 4s)J-Lc zhls)j s)

+ 'L( g xt 0 is)-h2(S)) 1hl(s))} 2())

- k-i1

r=O \-

1wh(1 2 (k))

k-1

1 E [hk 2(s)J [c (~L zhi()h(s))hi(s)1
r=O)



23

Formula (26) gives:

(~k) (%, zh(B)h,(s))h k ,,~wh, (s)h 1

+1 E~wz g 1 hI() ()

r=i

(45) q ~(t,q zhl(s)h2()

Again, using (8b) w~e have:

Cr)1 h(ý+X-Xw zhl(s)h,(s)) r
g9 (§,w zhl(s)hZ~)~r(,)=[ wh(~ 2 B

w zm h h(s) h2(s)j

r h1(+XXzhl(s)h (s\) r-

Uigthis, the last term in (44) becomes after simplification:
(46)

r-

z h (s)-h 1(E+X-Xuwzh (s )h (s))I

zh1 (s-h 1 (t-XXc 2hj1~ (s)) m 1 ) 2(

-~ 2~ k

k - l h ( _ g k ) ( ý w 7 h ( s ~ ) b ( a
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Substituting (45) and (46) in (44) and sirplifying we prove

the lemma.

Lenmm 1.7

For R(s) > 0, R() _ 0 and IzI 1 the transform

I ( ,s,z) is given by

(47) i =n (lO• q.- (n) M (C.s,z)
Sn= 0 .- iv v '

S ori,(0* (§,s,z)
V=r

where ti(t,s,z) fox i > 1 is given in lemma 1.6, and

ori (.) is defined in (30).

Proof:

U.pon taking transform in (39) we obtain:

n=O cc °i

= T q1or l )n

Multiplying both sides by zI and summing with respect to j we

get (47.).

Theorem 1.1

For R(s) > 0, R(Q) > 0 ind Iz1 <1 the transform

ai(ts,z) of the joint distribution eij(t,x) of queue length

and virtual waiting time at time t for the tandem queue with

non-zero awitching rule is gi'.en by:
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(48)

ei(§,s,z) = 2i(Es,z)+ + [l+• . 1 (I,s,z)]

where Ii(§,s,z) for i 2 1 is given by lemma L..

Proof:

The transform of (38) yields:

(49) 8.j('s) = 2*j(t,s) + Ml(02M ,)

+ 8j -e•t P{k)(t)-O§ (k)( 0 )-i 1 dt
00

The Kronecker delta in the last term is due to the fact

that:

=0 ifj O,

= ~jk) (0)=0 I o)=il if ~J=O

If M(') is the renewal function of the general renewal process

formed by the ends of busy periods and m1) its L.S.T.,

then:

0

W e~ - t e-X~ ' d M(u)
0 0
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where u is the end point of the last busy period before time

t and no customer arrives between u and t.

Since the input is Poisson, between two successive busy

periods there is a negative exponential idle period. Consider

the renewal process formed by the end points of busy periods

and let Fl(-) be the distribution function o- the initial

renewal and F(-) be the common distribution function of other

renewals. Then:

F1(X)=G(i)(x), which is the i-fold convolution of G(.)

F(x) = f Cl'e X(x u)3 d G(u)
0

where G(.) is the distribution function of busy periods.

Hence the renewal function M(t), which is the expected

number of renewals in [O,t3, is given by:

M(t) = (F F(n))(t)
n=O

Taking L.S.T. we get:

n=O

_____ 9 R(W) > 0= -f-(Y)

where fl(•) and f(g) are the L.S.T. of Fl(-) and F(.)

respectively, which are given by fl() = y() and

X 
and
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That is:

Substitution of this in (50) yields that:

(51) e- t (~k) (0=0 •(k) 0=)d

0

Also,

(52) M,) M( 9 (g)

k.+x

The relation (52) between the L.S.T. of M1(t) and M(t)

holds because of the fact that the beginnings of busy periods

are obtained by adding negative exponential idle periods to

the end points of busy periods.

Substitution of (51) and (52) in (49) gives:
** .••y() ** i.

e j(Ms) = 0j(gKs) + 8- §oJ +

Multiplying both sides by zi and summing with respect to j

we get the theorem.

I

J
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5. Distribution of Virtual Waiting time

The stochastic behavior of the process

Sk)(t), 0 <t < -) is as follows. 1 k)( 0 ) is the initial

occupation time of the server. If Tj)(o+) = 0, then the

server is idle at time t = O+ and until the arrival of a

customer who initiates a busy period.

Consider the arrival times tl, t 2 ,.... within a busy

period which started at t = 0 with i > 0 customers in ui,;t 1.

t is the n-th arrival point of the busy period. Let
n

(V)

i = mk + r (0 <r <k, m is a positive integer) and X n ben

the service time of the n-th customer in unit v, v=l,2.

Then at t the arriving customer has a service time
(3 n

X i) in unit 1. Hence at tn + 0 the virtual customer has

to wtunits of time more to enter service

in unit 1, provided i+n is not a multiple of k. That is, if

i+n is not a multiple of k then at tn I Ik)(t) has a jump of

(l)magnitude Xi+n. On the other hand if i+n is a multiple of k

then the virtual customer has to wait until the completion

of that cycle and hence at tn I k)t) has a Jump of

magnitude:

X(l) + n ) + F r) X(2i+n i+n-k+l ^i+n-k+2 +' i+n

This is shown in Figure 1..
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;V)

xtli

0 4..

Figure 1.

Graph of the Stochastic Behavior of the Process

For i > 21, let 1W(t,x) = t()q cýk()i be the

distribution function of virtual waiting time V1 k)(t), given

that at t=O there were i customers. 1Wi*(t,s) is the L.S.T.

of 1 i •(tx) and:

(53) • (f ) e 1W(ts) d"

J . i

0

Theorem 1.2

For R(3) > 0 and R(ý) > 0, the transform W (ý,s) of

i\i

Figure 1

the distribution function iWictix) of the virtual waiting

thme (k)(t- is given by:
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(54) i1MW(,s A S) + A i~ 1A(,)

i~l,

where lt (FS) is given by:
(55)

1*()( k- hk)1

k-I k-i (

+ " r E() (1- '*)h")(s)g~ (F, 0 4jJ=l o ij V=j

Proof:

From Theorem 1.1 the transform of the joint distribution

oij(tx) of queue length and virtual waiting time is given by

B•,siz). o Hence the transform of the distribution of virtual

waiting time is obtained by taking the limit z •i in

e!(ý,s,z). That is, from (48):

(56) wi*(Fs) = urn Oi(Es,z)
z-:l

: R'(;,s,1) + .

Hence it suffices to prove that:

(57) , A
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Lemma 1.7 gives:

(58) 2L~s1 E E q~1(n) *~s

n=O j =1 0i

where fronl lemma i.6 ".((ýsji) is given by:

k-1 k-i

nk~s)ý(. h~sihmhi(e)h 2(s)1

k -1i, 
B g 9 0+ Z (19V 2j

Substitution of this in (58) leads to:
k-i k-1

E o,[= h1 r.hh,(s)h-q (f))]

2 n=O oi

1q fl+i) [E,c~hl(s)h2()

+ k-iq (1-c-,v) h~j(s) gv)o}]
=1 V=1 M 2

which establishes (57), noting that from (33):

(o)i W Bi and from (35): T 0 =(#O ~
n=O
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Limiting Behavior of the Virtual Waiting time Process

The limiting behavior of the distribution of virtual

waiting time is given by:

Theorem 1.3

If X a1 + X a2 < 1 the limiting distribution

lrm lWi(t,x) = 1W(x) exists. The L.S.T. of 1W(x) is
tM
given by:

(59) 1 w(s) = (1-Xa.-Xa 2 )[l+X 1A÷-(0,

where A, (O,s) is given by (55).

If Xr 1  Xa2 > 1, then lira 1Wi(tx) = 0 for all x.
t -

In order to prove this theorem we first show that:

Lemma 1.8

10 1

then the limit lim P. (t) = Po always exists. We have:

(60) - Xa1 - X 2  ifXl + Xa2 <1

0 0 if Xc Xz -> 1

Proof:

If M(') is the renewal function of the general renewal

process formed by the ends of busy periods, then:

( k)( (k)) ~ t e- X -u) 44(u)
Pijt pký (t 0(0) l 0
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By Smith's Key Renewal Theorem,

, 1 I•e•
lim P (L) = ' - eu du i

t Pio =0 I if Ni + XU2 < 1

= o0 if X a + % a, 1

where A =2) is the mean renewal time. Hence the

lemma is proved.

Proof of Theorem 1.3:

Summing equation (38) with respect to j we get the

distribution of virtual waiting time as:

(61) 1lW i(t,x) = iA(t,x) + 0 iAl(t-u,x) dM1 (u)

+ pi(k) (t)=o ,(k) (0)=. U(x)

where:

(62) 1 i(t,x) = E Tij(tx)
j=O

Taking L.S.T. of (61):

(63)

W (ts) 1 Al(ts) + A 1 (t-u,s) d141(u)

+ p{ýjk)t)O (k),o)= i}

Using Smith's Key Renewal Theorem (Theorem 4, Appendix D)

and lemma 1.8 and taking the limit of (63) we have:
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(64)

tim 1wi(t,s) X (l-xc~ 2 I*-•)1 (us)du+(l-•%Ct-Xa 2 )
t -, 0

if )-Xai - a > 0

S0 if 1-xa - Xa2 _<o0.

since from (41) it can be shown that lirn .(t,s) = 0
t -ý Oj=O=

which implies from (39) that lita A(t,s) = litrajt --. Ca t -ýC j=O

Again, (64) can be written as:

(65)

lim *i(ts) = (1-X- AXcX2)t1+X•.Ai (Os)] if I-xQ,-•xa > 0,
t-v•- = 0 if 1-Xa.-Xa 2 .<0

""From (55) it can be shown that IAI (O,s) is continuous at s=O.

Hence by Zygmund's Theorem (Theorem 1, Appendix D) the

limiting distribution lim 1w(t,x) = 1W(x) exists and the
t -. c

L.S.T. of 1W(x) is given by (65).

Formula (55) can be rewritten as:

4
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(66)
** (hk (s)-1][hl(S)h Ws-13

,k-l

+ (1 k-l l "((s)h 2 (s)3

k-i k-i
+ E orj.(0) 1: (l-WV)hV(s)g~v)(O)O)} )

where 'l(s) and )2(s) -re respectively the first and the

second term of (66)

Taking the limit s -- 0 in (66), we see that the

numerator of r2(s) is zero while its denominator is non-

zero. Hence:

A, (o,o)= 1(0+)

1ý1 + a 2

i-),a1 - 'a2

which together with (59) gives c'(Q+) : 1.
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Expected Value of the Limiting

Distribution of Virtual Waiting time

Let Ni(k) denote the expected value of the limiting

distribution of T, (k)(t). Then

(67) WM " (S)
bs

= - (l-Xz.1 \o~2 ~A A( 0, s)1as 1

From (66):

(68) A, (o,s) '(0+) + .2(c)1 Is 0+

where the number of primes indicates the number of successive

derivatives taken with respect to s. Let Aljs) denote the

numerator and A2 (s) the denominator of v'l(s), so that:

A2 (s)A 1

(~69) P' 0 2 1

2(As)] ~ O

Applying de l'Hopital's rule four times on the right hand

side of (69) we get:

2
(0+ [t1(o)61(o) -(oAll (~j[ o

where after simplifying we obtain:
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A'(O) : 2ka( +

0) - 3
AI(O) N 2V~•(l+~•+2)(_ )•2(%Y+'y2)+52(ala)1

AO(o) = 2k- 2 •(-1 .• a x 2 )+

2+ 22 - 1+ 201a+0•2 )

+

Hence :

(70) •(o-.) (K-1)y 2 (y+c 2  1' 22(1-Xcr1 .Xc2)2

Differentiating • 2 (s) with respect to s and setting 8=0:

a 2 k-i U"

m=l (1-12 )

+ S r j() k (1-(- •)(oo)},
j=l %Fj

-ry k-i c,
(71) 2, i-e,,

a2 k-i k-1 k-1. t(l--) ( (o,o)
+- 7 r (0) ,T vj 0,x j=l °rlj V=J M. i

From the properties of tht roots of the equation z -1 = 0

we find that:

t i
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k-i I k-I

k-i1 k-i k-
(72) 1- ="

m=1 m m=i m

By the method of partial fractions we get:

v+- i-(V+1)(1- ( 2 (1-W-) 2

+.......... .ý 2W - 2 (i-) 2 + v-1( 1 )2

m m Wm M

which gives:

- (l- k-i k-i k-i W* m+ 2
m=i (1-W) m=i M m7i (1- Wi) m--l (

m m

.r - V-i-
m-i - ~ l ~ l(1%)k-i(l

Sv(k-)-v(k-l)+[(v-l)+(v-2)+ *...+ 2-1)]

k-i
ir

since _ % = _ I for I < r <k-1.
m=l

That is:

k- _M -m(i- ) - vk-V)
(73) ( ) 2  2

m=l

Substitution of (72) and (73) in (71) yields:



39

(K-i) •2

(74) 2'(o) .. ...

cx 2 k-I k-i (V)
l(0) v(k-v) g•V)(0,0)" • ~l lj v=j

Formula (68) together with (70) and (74) leads to:

(75)
1bIA, (o,s) l

1 2 )

II-' (K-1)a2

2 k-1 k-l (V)

r(O) v(k-j)g. (0,0)

It follows from (67) that:

(76) M (k) = X( -O-l +22ct1cx2 ) (K-l)oy2

k-i k-i+-2 (l-X~l-xa) .T or j(0) Y v(k-)))g (V) (0,O)
j =1 0 j V=j

where orlj(") is defined in (30).

It is worth noting that for k'l:

M,½(I) X(Bl+2clla 2+D) I 2(l 1 -Y-l 2 )

which is the expected value of the limiting distribution of the

virtual waiting time of an MiGII queue with impute rate X and

service time distribution H *H5(). For k-l the tandem model

"V,
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reduces tr' an MIG lI queue with service time distribution

Hi *H2(.) )

Conjecture:

For all k > 1:

The proof for k=l is simple:

From (76) we have:

MTh;(2) 2 ~(. (~y.xzX 1 (~~)oo~j

<' o(-cix~2  r 11(0)-li1 < 0

Fince from Theorem 3 of Appendix B r (0) <
j=l ]Y 1-IXi-X91Xc2

6. Queue length Process

Let P ij.(t) denote the probability that at t, j customers

are in unit 1, given that the service started at time t=O

with i customers. That is:

G) P.ij (t) = Pýý(k)(t) = j I §,k)(O) = il

Let jT ij(Q) be the Laplace transform of" P. (t) and:

(79) iti(,z) = Oz ,zl 1, R(P) >0

or jz _ 1, R(1) > C

For i=o and j > 0 we have:



41

(80) it(•) = -- ) andX+ t X+g ij

(81) i •- + X '(§,z)3

The equation (80) is obtained by consideriig:

(i) If J=O then there can be either no arrival in [O,t)

or there is a negative exponential idle period followed by a

busy period.

(ii) If j > 0 there is a negative exponential idle period

followed by a busy period, and in this case the first term on

the right hand side of (80) vanishes.

For i > 0 we have:

Theorem 1.4:

The generating function wi(ý,z) is givein by:

(82) A (§'z) = Xi(ý'z) + m+ - + (

where

(83) xi(EZ) --[(+X-x 1-h z().X-)j 1

1zi [z-h 1(F,+X-Xz)]-z [l-h• ( +X-,xz)], i(F)

(z-l)h1(0+X-XZ]o ri 'iz •[g )•(,r)+ r v )(

ii- v=l 1)}I

and 0r ij 0ri (ý,z) are definei in (30) and (31).

0 i.0.1

I



Proof:

The generating function ni (9,z) is obtained by taking the

limit as s .0G+ in the transform 9.(ý,s,z) of the joint

distribution e j(t~z) of queue length and virtual waiting time.

From Theorem 1.1 -;:e have:

3fi(Zz) =lim (F's'Z)
S -:Oi

N+ -+¥(,z

Hence it suffices to prove that:

(85) 0i(,Oo,z) =

From lemma 1.. •i(.,.,.) is given by:

(86) Mi(Ro• 0 .n). j(,oz

n=O j=1° •

where j,O,z) from lemma 1.6 is given by-

(87) ,t(o,) = - - - "

since other terms ii. tjie -aa1ion on the right hand side of

(40) for m=1,,. ,k-1 vanish as s - o. Substituting (87)

in (86) we "Ind that:



(88) Y )) =[(ý.X-Xz)[z-hi(Z+X-Xz)iI- ]

Lz ~n=O01

- z-h 1(ý+X-Xz)] Y 0q. 1 (,z)

+ (z-l)h (Y\X-Xz) Y 0 j(O)~g,ýR)(§,z)+ 1 g(V)(I) I

J=l v=jJ

z ( z-)hl(ý+X-Xz)]-zorih(ýz>.f 1 Ji y W

vo jl

which proves (85).

Limiting Behavior of' Queue length

The limit of P. . (t) as t -. ~always exists by a theorem

of Smith (1955).

Let us denote:

(89) p. lim P. (t)
J z .

and

(90) P*(z) z* z' 1:< ,
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Then by a standard Tauberian Theorem (Theorem 5, Appendix D)

we have:

() lim Go Pij(t) dt(91 PJ t - 0•

lira O e-ýt Pj(t) dt

g 0 o i

which together with Theorem 1.4 gives:

P (z)= lira ý i(,z)

•0

= lim F- Y• i, (,)

(l-Xal-XCY2)L1.-Xl(O,z)3 if 1-Xrl-X•x2 > o

(92) =

0 if l-,c.-,c, 2 < 0

where Xl(O,z) from (83) is given by:

(93) Xl(O,z) = 1 - .z+hl(x-xz)[ r (O,z)

)iiz-h 1 7-5271 ý-1 IO 1

C ( k) k- M)-
" I r (0)[g k)(',z)+ El (0,0)11

j=lo uj \3

Substitution of (93) in (92) yield* the following:

Theorem 1.5

The generating function P*(z) of the limiting probabilities

P of P. (t) is given by:
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(94)

P*(z) = (l-Xl 1-X 2 )YX(-Xz)[z-h 1(X-Xz)]' 1-1 + or 1 (O,z)

k-i

(- 0r)(o) =•°,z)g Y, gj (00)]
j=1 0 I J=

where orlj(.) is defined by (30).

The Steady State Expected Queue le.ngth

Let M (k) denote the mean of the limiting distribution

of t (k)(t) as t -: -. Theorem 1.5 gives:

. -p*(i=

M (k) 6 _

=(1-,&cv1-Xcz2)(95) [('•)-[2,,1X X' I F •r j(0)
2(1- Xal) 21j0

"C (k) )
"- > rir(0) gj (0)

+ (1-xrQ) •j (j-l)Aorj(0)- T 01°(0)l•(O)g j
j=o 1= 1

V~i=

2(!-Xc,.i)2 j=l[

Ii i
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CHAPTER II

SINGLL SERVER TAYMEM QUEUE

WITH ZERO E.,WITCHIIG

Here we consider a tandem queue with a zero switching

rule in units 1 and 2. At t=O the server starts in unit 1

and continues to serve there until the que'Ae in unit 1 be-

comes empty. After completing the 1-task the server switches

to unit 2, serves all the customers there, then switches back

to unit I and continues in this manner. If the whole system

is empty the server waits in unit 1 for the arrival of a

customer who initiates a busy period.

The analysis of the queue with zero switching case is

easier than non-zero switching case. The distribution of

busy period for the zero switching case is the same as in

non-zero switching case (Chap. I section 2).

1. Transition Probabilities of the Basic

Imbedded Semi-Markov Process

We use the same notations as in Chap. I.
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(1) Qia(XW = lIn'Tn.~ < x ni

r=io 0u i __
(u)(v)

The transforms " ()and qi(s,z) of qj(.) are given by:

(2) q~(s ; 9 gr)(s) fo-(B+X)x (kX)j dH (r) Wx
ij r=i oo10-y-

qi($,Z) = .gi(r)( 5 ) hr(,+XXz)
r=i2

(3) = Y'js, h2(s + X -. )

(by l.emma 1.2)

if Q Z(n) H are the taboo probabilities defined in (1.28) then:0 ij

oi()j ijUx

and

(14) ijn (x) -Q~'(.u)dQ (u), ni >

Thei.- transforms are given by:L 5 qi) (S) b=

((n)) ~i
oqij ~ ~ i q s v~s

v. 01
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(0) 1.
q (sz) = z

(6)
6)(n) CO (n-1)

oq °q 8,z).10qiv (a sz n •1

A further discussion of these transition probabilities is

given in Appendix B.

2. The Joint Distribution of Queue l

and Virtual Waiting time

For the definitions of queue length and virtual waiting

time we refer to Chap. I zec. 4. Let ý(t) and Tll(t) respectively

denote the queue length end virtual waiting time at t. Define:

(7) e 1(t,x) =- (t)=, I 1(t) <x I (o)-=i}

(8)

vii(t,x) - PV(t)=J, 0 < _(t) < x,l(-r)Jo for all rE(O,tJ

I (o) i }

Analogous to equation (1.38) we obtain:
t

(9) 8ij(t,x) = @1j(t,x) + 0O l•(t-u,x) dMl(u)

+ *(t)=j, 11(t)=o I •(o):i} U(x)
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Let (t,x) denote the probability that at time t the original

cycle has not ended that ,t) = J, 0 <X(t) _5x and

T½(r) # 0 for all TE (O,t], given that at t=O the service

started in unit 1 with i customers.

We define bhe transforms i(,s), i(,)q (,s),

ei(§,VBPZ)s Yt(ys~z) and ti (ý,s,z) as in chiap. 1 sad. 4.

Lemma 2.1

For R(s) > 0, R() _ 0 and Izj _< 1, the transform

*i(yS,z) is given by:

(10) *i(ts~z) = 1 )+hls.•h(s)

+ z[(zhl(s)),i '-Y''i§)hlh(s)_h (lr÷X-,•h(8)) )]

-1

Proof:

The probability *1j(tx) is given by:

(ul)

i tt • t dt X t d °(r )(u) e* (t 'u ) X (t ')u J
rij tix Ito J .

+ 3 5t t+x t+x (r)-X -u
r•O- l o It v.

(U)(v) (Vl)

dHl(v-u)dH' (vl-v)
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The firrt tern is ob' ained by assuming that the server is

performing a 2-task at t. The cycle of tasks in vhich the

server is serving at t -tv•rts with i customers in unit 1 at

t=O and the unit 1 becorecs empty after r Pervices at time

u(O < u < t). There a'e j irrivals in (u,t). The service of

these j custo.zers starts after the completion of the 2-task

in progress. Let this 2-task end at time v(t < v < t + x).

The corvice completion in unit 1 of the j customers occur

at tirn vl(v < vI < t + x). Now we integrate and sum over

all choices of r, u, v, and v 1 .

r-- sco:c tc-:-n is obtai:,ed by assuming that the server

is rcrfor::½ng a .-tc. 'u at t. The cycle of tasks in which the

server is r.--ing at t st-.:ts with i customers in unit I

at t=o. LTt there be r soc.'ice completions in unit 1 before

t. Th7 lThct of thc!e occu-s at time u and at this time there

are V custoirais vaiti-Z in unit 1. There are J-v arrivals

in u-.it 1 in the ir-l (u,t) so that at t there are j-1

custo--ýrs in unit 1 excc-pting the customer in service. The

ccrvice cc.plletion, in unit 1, of the cutomer in service

occurs -.t ti-,.- v. ThcX -ervice completion, in unit 1, of the

J-1 c....o...rz- occ.':-.- cat t v 1 . Finally we sum over all

choicc o0 r) V, u , v, nrin! VI.

c (.!) s wv!_' for all j > 0. For J=O the last

tezzi . Uion J;Q- .•g transforn in (11) we find:
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(12)

MS 9 g(t~~;hli(s)J e a I dt dH
ijr=i io 1 0 0P- 2 (v)

+ E E g i I S I e J V ,
r=O v-1 o o0V

dt dH1(v)

Hence:

g+X-s-Xzh1 (s)Qi2 2

+ 1; ~g(1r (Et)hv(s)z'jth (s)-h (v\x-Xzh,(s))]f
r=O V=1 i 1 1

Using (3) and (1.14) and simplif'ying we prove the above lemma.

Lemma 2.2

For R(s) > 0, R(§) > 0 and 1,zi < 1 the tra~nsformn

Ti(§s~z)is given by:

(13)

1 CO n) c)

+ z rh (s)-h 1 ý+X-Xzhps( i

*[z1h 1(s) - h~+-zls)T

EF q(n) tz ()-q(n) ýYw

n=0 O
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Proof

As in lemma 1.7 we have:

(14) 0if'a'z): 27 o q iv q(M) *'(t,s,z)
n=-O -V-l

Substituting $i(§,s,z) from lemma 2.1 and simplifying the

result follows. The convergence of the serices

(n) So•n (s,z) is discussed in Theorem 3 of Appendix B.
n=l

Theorem 2.'

For R(s) > 0 R(ý) _ 0 and IzI <1, the transform

S((:',s,z) of the joint distribution 0i(t,x) of the queue

length and virtual waiting time at t for the tandem queue

with zero switching is given by:

(15)

) = ('s'z) + .+,-Yi) 1

where 0i(ý,s,z) is given by lemma 2.2.

Proof:

Similar to the proof of Theorem 1,1.

3. Distribution of Virtual Waiting time

The stochastic behavior of the process 11(t), 04<< I

y be described as follows: %jO) is the initial

occupation time of the server. If Th(jO*) - 0 then the server

is idle at t=Oý. Let i be the initial queue length at t=O

anid t the n-th arrival1 point and X() the service time, inn n i+n
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unit v, of the .-astomer arriving at time tn. At tn the value of

1l(t) has a jump of magnitude (i) Between any two arrivals

q2(t) decreases linearly with slope -1. As soon as N(t) reaches

zero, it Jumps suddenly to a magnitude equal to the tctal unerce

time of all the customers present in unit 2 at that time,

after which it linearly decreases with slop -1 until the arrival

of a new customer. This is shown graphically in Figuxe 2.

0 t3

Figure 2

Graph of the Stochastic Behavior of the
Process t\(t), 0 <t <)



Let W(t,x) = (t) <x §(o) = i) be the
Iwi

distribu.tion function of the virtual waiting time 1(t))

given that at t=O there are i > 1 customers in unit 1. Let

*4
1 .Ji (9,s) be the transform of iW.(tx) defined in (1.53).

"TA, iorem 2.2

For R(s) > 0 and R(Q) > 0 the transform

of the discribution function 1Wi(t,x) of the virtual waiting

time Ti (t) is given by:

(16) i~(§,S) = 1A.(§,s) + W[ + A(,)

where

(iT) A.(,s = +X-s-)xh (s)~ ~h(s)-Y()40 1 ~- i §.

+ E , [anm)-ant - )j

and

ao(•,z) = z

(18) an(§,z) = Yl [ý,h 2 .[t+X-Xa .l(ý,z)]) , n > 1,

Proof:

We get ?Wi (,s) by taking the limit z -c 1 in the trans-

form ei(ts,z) of the joint distribution e1 3 (t,x) of the

queue length and virtual waiting time. Theorem 2.1 leads to:

5 41oi(ý,,,)

(19) . i:•,,)+ •+x l;.,,
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Hence it suffices to prove that:

(20) M= 1 4 (•,s) , i > ,

from lemma 2.2 we have:

(21)

(m.n):i~s1 ~XsX 1 s? ÷h(s + ,)( k±
nflu

n=o

Equation (3) gives:
(n) ( O (n)

on)( ) on+l) -)
-q qn( 0) + ol

which upon sumding over n leads to:

Z 0q )(t"y1 (•)) " L " o o) + )n=o o 1=0 o-1

n=,l

(For ccnvergence of these jeries wi refer to Theorem 3 in

Appendix B)

Substitution of this in (21) yields:
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(22)

( [÷+X-s-Xh, (s) jhi(s)-Y,(t) +(j in -- O

- (n) ,to ] I
Using lemma 2 of Appendix B and simplifying the above expression

we prove (20).

Limiting Distribution of Virtual Waiting time

Let ?W(x) be the limiting value of iWi(t,x) as t -t. c-

and let w(s) be its L.S.T. The existence of the limiting

distribution can be proved by Zygmund's theorem as in

Chap. I section 5.

Theorem 2.3

,he L.S.T. of the limiting distribution W(x) of the

virtual waiting time y(t) is given by:

(23)

(1-________ 2)- .1.148) B sX+kh (a) ts + 1.- niY l
1n=lLanuT)

if l-)cz-XaL 2 > 0

O otherwise

where the Punctions an(.,.) are defined in (18).

Proof:

Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:
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(24)

(•-Xa1-X' 2 )[1 +X• 1_ (02s)] if 1-kal-ka 2 > o,

= 0 otherwise

where 1 , (0,s) is given by (17):

1A, (o,s)= [X-s-Xhl(s)" 4hls)-I + T [an (

-a%(Ol)3}

(25) -X= k 1 S lh~)+ lO -
1

The convergence of the series 1 i (0,!--6)3 is discussed
n,-1

in lemma 7 of Appendix B.

Substituion of (25) in (24) proves the theorem.

Taking the limit as a 0 in (23) we observe that:

(26) w<0) =1 +l-X&'(03,1)3
~ [i + n=1r anO~

= 1 if la-X--ka 2 > O,

by lemma 1 of Appendix B.

Expected Value of the Limiting Distribution

of Virtual Waiting time

Let N denote the expected value of the limiting

distribution of \(t). Taking the deritative of (23) results

in:

I
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S80

(27) =-(1z.• ) P {, i,[zl + YZ an(O,1)

S (1- --)
- - r a.'(o,1)}.

X n=1 na 1

Using lemma 1 of Appendix B and simplifying (27) we obtain:

+2XcY2 al,

(28) M --

Tý 2(14o) £1_(~2 )23
i-x2 2

Computationof higher moments seems to bv very tedious.

X(01+02 + 2 al2 )
If we denote 7- = which is the steady state

expected vrbal waiting time of an MIGI1 queue with service

time distribution HJ*H2 (.), then it can be shown that:

1 ýz < o zc>i

4. Distribution of queue length
Let Pij (t)=P[§(t)-J I %(O)=i) and ff(• be its Laplace

transform and

(29) gi{z - .()zj it({ > 0, Iz I._<I

or. R(1) ..> 0, IzI <1

Theore, 2. .

The generating function ii(.,x) is given by:
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(30)

where Xi(f,z) is given by:

(31)

n n

and the functions a n(.•) are defined in (18).

Proof:n

Analogous to equation (1.84) we obtain:

(32) litZ = Oj( i(~~)

-qi

n-0o

(by Jena 2 i n Appendix R)
= ~ - 0~fl)e~z)
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which together with (32) proves (30).

Limiting Distribution of Queue length

Let P, = F.rn P.(t)
J t4

and

(33) P*(Z•) = T P•, z II < 1,
J=o o

where the existence of the limit is established as in Chap. I

section 6.

Theorem 2.5

The generating function P*(z) is given by:

(34)

P* (Z•= [1a L(n(0,z)] if l-Wal-Xa 2 > 0

= 0 otherwise,

where the ftowions P are defined in (18).

Proof:

It follows as in (1.92) that:

(35) P*(,)- lirm •.i•z
•0

=(1-Xcz1-kcr 2 [u X Xl(O ,) if 1-Xcx1-Wc2 > #61

= 0 otherwise,

where xY(O,z) is given by (31):
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(36) Xj-oz) -- - a0(Oz)Lann(O"))

z[z-hl(X-xz) [1-hi X-)z)]

,,O [&°aoZ) - a,(o,1)]

+ h1(X-z) h [1--

Substitutiin of (36) in (35) proves the theorem.

It can be shown that:
P*(1) = 1

&Epected Value of the Limiting Distribution

of Queue length

Let Mt denote the expected value of the limiting distribution

of §(t). From Theorem 2.5 we obtain:

M a *

nn
fl,('

(by lemft 1 in Appendix B)

C1,
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5. Distribution of Total Time in the System

Consider all the customers present in unit 1 at time t.

Their total time required to complete services in unit 1 as

well as in unit 2 is defined as the total time ia1 the system

at t. We denote by N(t) the total time in the system at t

for the zero switching case.

Let 2Wi(t,x) = P(q 2 (t) _<x I g(o) = i be the

distribution function of the total time in the system 1 2(t),

given that the queue length at t=O is i.

Further we denote:

(38)

•(t,,)-O O < i(t) < x,I,(T)•0 for all rE(O,tl Y(O) = i}

and let 2X (t,x) be the probability that at time t the original

cycle has not ended and that 0 < 1(t) <x and

%t2(T) j 0 for all TE(O,t), given that at t-O the service started

in unit 1 with i customers. Analogous to equations (1.38) and

(1.39) we obtain:

(39)
t

2wi(t,x) i(tx) + A 2A(t-ux) dMj(u)
0

A,(t-x) " + T d( U) ix0 (tou)x)

J-0 jul o
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For R(s) > 0 and R(ý) > 0 we define the following transforms:

2wi g~= e-E I e- d 2 W (t,,x) dt,
o 0

2Aj (IZ,) e ax~ d2Aj(tx) dt,
o 0

-j a~ e 0 e X 2 (t,x) dt

0 0

Lemm 2.3

For R(s) > 0 and R(ý) >0 the transform . (,ss) in

given by:

(4].)

q- qjt~b2 (8)Y 1 (s)) +

*[(h 2 (s)Yj(a))' - qj ~ s+,l3

Proof:

The probability ?xi(t~x) is given in ttrms of the

probabilities Gi). by:

ij~
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(42)

r~mj vlOv, =or 1=V1 +V2 0 t v i
(u)(V) (vi) (v2)

•e-(t'u) IX(t-u)l, 1 e'X(v't) Lx(v-t)1 22 dvH (r)(v'u)
v v2 (v-u)

"dG (Vl-v) dv H ())

a CO cc Wt t+x t+ x t+x

r=Ovlwlv=Ov=Orl=v+ViV-lo t v v.S• " •(u)(v) (v1)( 2

______ £~ t)1v2

a-x(t-u) x(t-u)]j e- •-t) :L d Hl(v-te • e V2 v(V'u)

,.. rz)(r+v• )
d dvG (r1)l÷•lo (vl.v) dv H2 1) (v2-vI)

The first term is obtained by assuming that the server is

performing a 2-task at time t. The cycle of tasks in which

the server is serving at t starts with j customers in unit 1

at t-O, and the unit 1. becomes empty P.fter r services at time

u. The number of arrivals in unit 1 between times u and t is

v1 . The r customers in unit 2 at time u have service completion

at time v and v is the number of arrivals in unit 1 between

tUres t Mnd v. At time v there are \ý+Y2 customers in unit 1.

_______
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Starting with VI+V2 customers at time v, unit I becomes empty

after r services a• time v1 . The service completion of the

V1 customers in unit 2 occurs at time v 2 .*Finally we integrate

and sum over all choices of r, v1, VV, rl, U, v, V1 , and v .

The second term is ebtained by assuming that the server

is performing a 1-task at time t. The cycle of tasks in which

the server is serving at t starts with j customers in unit 1

at t=O. There are r service completions in unit 1 before t.

The last service completion before t occurs at time u, at

which there are v customers waiting in unit 1. Tie number of

arrivals n unit 1 between times u and t is vi. The service

completion of the customer in service at t occurs at time v

and there aro. v2 arrivals between t and v. At time v there

ar v+v 1 +v2 -1 customers waiting in unit 1. Starting with these

v+v1+v2-I customers at time v, unit 1 becomes empty after r1

services at time vI. Lastly the service completion of the

r+v+V1 customers, who arrived in unit 1 up to time t, occurs

in unit 2 at time v 2 . Now we sum and integrate over all

choices of r, v, Vi' V2 ' r,, u, v, vl, and v2 .

Taking the trmnsform of (42):

i _

•l



(43)
co CD cc g (r)

Xj GIS) g Y) (§~)h2 (S)g(Sr=Jv1,(Ov2Or 1=,v1+v2  +V)

. e-( vX)' 42) dt ef ( +)~ v r Vt
-V~r v- V1  V

+~ I(. :)hgV 2  (s)g \+,l 21 ,0(s)

e-(yý+ t _____ ____+XvIv)-dHvt

o 1 V2 *

Using lemma 1.1 and simplifying the above expression leads to:

(44)

= ~ ~ c -.~)~ r ý+X-Xh (S)Yl~ dt

(r) 2+ - 1 ,
2)(. '§)h2 T9Y () e dt

r=J 0

rt Cr

1w ~ ~ ~ H e(v)H2(Vt

____0
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g~r)(+)j+V(8)y84 v

r=O v=l Jo

* e -Cs+XY 1(s)-Xh2(s)Y1 (s))t dtd2(r (v)

= [B+XY1 (s)4xh2(s)Y1(I)] E g

h r~( +X-Xh Wsyi(s))1

2 2

+ E Egr) ()r+V(,)Yvjl( r(S)X( )

h h1 (tX-Xh2(s)Y1 (s))] I

Using (3) and (1.14) and simplifying further:

(4.5)

= -+~~)X2()ls lq ct 9-6+XY1 (8)I

- q1Lgh 2(a)Y1 (s)) + IY1()h(+-h()l8)

*[Qh2(a)Y1(s)) - YJ(g,h,($))] [hlCa+X-XY1 (s))

-h 1( tt) - h 2(S)y (1;))]}

This together with y4(t,,h2(B)) q1 ~k.)prove@ the lema.
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Lemma 2.14

For R(s) > 0 and R(9) > 0 the transform 2A(9;8) is given

by:

(46)

n a(h 2(8)y1(s))] + [ls

.[bl(s+X-XYl(s))-hl(+X..Xh(s)Y I(s))I

. [(b,(s)yp~s)) -y (Q, + Z~ (a (,h,(s )Yl(r,)

n

where the functions a n(.,-) are defined in (18).

Proof:

Upon tra~nsformation of (40) yields:

E (n) w *

Substitution of lemma 2.3 results in:
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(4T)

**i ((s)) ( -osY

-(n) (~2,~(l}Y(lh(÷-h()•,)"

* [h1(s+X-XY 1(s) .hY(d-xh2 (s)Y1 (s))]

0 [ bh2(s)y1 (s))i- [ o + nl(g.h2(s)Y 1 (s))

n=l 
n=l

This and lemma 2 in Appendfx B together with
"" on) = yi() prove the lemma.

n=l

Theorem 2.5

For R(s) > 0 and R(g) >0 the transform 2W(,s) of the

distribution function 2Wi(t,x) of the total time in the system is

given by:

(48)

.Wi = 2A(,s) + + [I + X' 2' (•'K)' i A 1,

where 2A (t,s) is given by lemma 2.4.

Proof:

Similar to the proof of Theorem 2.2.

)
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Limiting Distribution of the Total Time in the System

Let 2W(x) = 1rn wi (t,x) and 2w(s) be its L.S.T.
t 2i

The existence of the limiting distribution can be proved as

in Chap. I section 5.

Theorem 2.6

The L.S.T. of the limiting distribution of the total time

in the system is given by:

) 2ws) = (1-Xcz-Xa 2) l+X 2• (o,s)] if l-Xc-Xa 2 > o,

= 0 otherwise,

where 2A, (0,s) is given by:

(50)
__ CO XY (s)-si2A,(os) [-s+xvi(s)-Xh2 (s)Yl(s)-1 [s(0,

2 A,(!s

a- n(Oh ( (s))ls +

[YI(S )'-hI(X-Xh 2 (s)Y1 (s))]I

S[hl(S+•-xY(s))-hl(x-xh 2 (s) 'l(s))]

[h2 (s)Yl(s)_l + ni n(O0h 2 (S)Yl(S )J )•

and the functions an(-,-) are defined in (18).

Proof:

Equation (49) is obtained as in Theorem 2.3 and (50) from

lema 2.14 by taking t 0.
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In (50) taking the limit a -t 0, -we observe tbat:

2 + --- 7 aE(O,1)
(51) 2n(oo) -_ 2 n-a,(1 - •)~

ol + a
2

1-Xcyl-Xa 2

(by lemna 1 in Appendix B)

Now from (49) it is easily seen that:

2j( 1 = 1 if l-Xc1 -X-2 > 0.

The Steady State Expected Value of the Total

Time in the System

Let denote the expected value of the limiting
2

distribution of T2(t). From (49) we have:

2

2UK 0 S e il rceda

(52) -~roll

To find the derivative , (o,s)] we will proceed as
8=0

follows:

Let Al(s) and A2(s) denote respectively the numerator and

denominator of 2  (C,s). That is:

I
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(53)

I - a(O,h,,(s)y1 (s))] + [hl(s+X-X-Y: (s))

h h(X-Xh2,(s)Y1(S)) I [h (S)y (s)-1

n1 21

(54&)

62s _ tls-X,() ,(s)] [Yls) -h js)e-(s

- ~ 2A~~~u 5jj= 0  6'A(s) -61s

- ~Applying l'Horital's rule fou~r times:

A__0 a'(0) A"L(O) t6'(0)
(56) A, ( )J -2 3.()2

where the number of primes indicates the number of successive

derivatives taken with respect to a.
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Computations yield: 2

=~~0 1x -~ X a2+ l)

- 3c.(1-Xa) a(O)+

2)+ý"22( + }r
(58) A(o 2 ý,Xy2 1 2 1Xt

2c2(1-X2)

- Xal (02 + ila2)l

3a~sX2 E~~)~ 21 a '(0,1) + 0

n--1
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+ 01 02 (l-Xa.)2 ,,+ 2a 2 (-XX 1)
(-c2 z2)

.- {2¢1-Xc%)3 t1-( 1 .)_2) (1-Xcr-Xa)}"

~~ a2 }

(by lemm 1 in Appendix B)

Equation (52) together with (59) yields:

S•.(6o) X{(l-XCýl(1+Xa2)(0l+ft2)_1.2a [l-;, 2+•a

M1  3 2 2

6. The State of the Server

Id this section we try to answer questions of the type:

(i) What is the probability that at time t the server is

r busy (ow idle)? (ii) Tf the server is busy at t what is tha

L! pribab'lity that he is serving in unit 1. (or unit 2)?

(iii) And if he is serving in unit 1 (or unit 2) at t what

is the probability that he is serving the r-th customey of

the cycle! in unit 1 (or unit 2)?

Finally we ý;tudy the limiting behavior"of the above

We define th'e fCll.ving probabilities:

"I . . .. . . . ... . . . . . . . . . . . . . .. .. .

4i"
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0 r (t/i) is the probability that at t the r-th customer

of a cycle of tasks in unit v, v=l, 2 , is being served, given

that the service started at t=O with !> 0 customers in unit 1,

and its transform:

(61) i =' et e(t/i) dt, V=1,2

Further, e (t/i) is the probability that at t the server is serving

in unit v, v=1, 2 , given that at t=O there were i > 0 customers

in unit 1. Then:

(62) ev(t/i) =: e Vr(t/i) v=1,2,
r=1

Lemma 2.5

The transforms (V/i) of e (t/i) -are given by:
yr v

(63)
O (r-. (

Ir(i) a0jS - to

1-h (Q' E r. W 8  (r-. )
F Li oij Li

(64)

0 1-h 2W 3 [r(~ Oh

'J-il n:J -rn0I

where r (' is defined in (1.30), ml(j) in (1.52), g(..)

in (1.6) and:

i~
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1 = if r <n Fnd 0 if r > n.

Proof:

Let o8 er i) be the probability that at time t tho server is serv-

ir the r-th customer of an arbitrary. cycle of tasks, in unit v,

given that the queue has not become empty in [O,t] and that at

t=O the service started with i >0 customers in unit 1. Then:

(65)

oel d • it (u) dt li) (UlU)

n=Oj=l Jl~ o u 1

n=0J 1 -=

If the queue has never become empty in £o,t], let the server be

serving in the(n+l)th cycle of tasks at t, n > 0. At the end

of the n-th cycle of tasks there are j > 1 customers in unit 1,

given that at t=O there were i customers in unit 1, and the

n-th cycle of tasks ended between u and u+du. this probability

is given by doQ() (u). Starting with j customers in unit 1 at

time u, there are at least (r-l) services up to time u1 which

is the last epoch of service completion before t and at the end

of the (r-l)th service Jl ? 1 customers are waiting in unit 1.

This probability is given by the second integral. The last

factor [1-Hl(t-ul)) ensures that at time t the server is serving

the r-th customer. Finally we sum over all choices of n, J, jl4

u amd u1 to obtain (65).

I--
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By a similar argument we get:

(66)

CO rO t t

nzO j=1 v=j 0 0J

dH 2ul-ul.[1.H (t.2]

where the factor I is present because if unit 1 has v

services then unit 2 can have only at most v services.

The Laplace transforms of (65) and (66) lead to:

(67)

r

j=1 J1 i1i 0 ij 
•)

(68)

O2r(fIi) J= \r- -<\3 ri §g o

The usual renewal argument gives:

(69) e*(•r ii) o e*( )oe) (+ Q) , v-1,2,.

Substitution of (67) and (68) in (69) proves the lema.

Lemma 2.6

If e*(fli) is the Laplace transform of e (tji), then:V •; V

{f

I1
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(7o) ei(fl±) - E orij( [ -

* ,I 1 0YJ

cc

+ -_( E r 1 or(03

+1 01
'E r r[Y1

J=l rl

where Y1 (.) and *1(",') are defined in lemma 1.2.

Proof:

This is immediate upon summing over r > 1 in (63) and (64)

and using lemma 1.3.

Lema 2.1

If 1 -Xlg 2 > 0, the following limiting probabilities

are*,

(TZ) amm

(72)
"0 "(i) lrm elr(tli) = xa2(1-xat-xa 2 ) E E or _](O)gjr (0)

T3)

(V

40i ii. e2r(t Ii) ' Xa(-a1 2 £ E I,5] rlj(0)gjo (0)
t -4 0. Ju (rvJo.1. J

(T4 J
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Proof:

The proof follows from a Tauberian Theorem (Theorem 5,

Appendix D):

(75) li e r(tj±) = liz • e(•i) , v,-,2)

(76) lim e0(tIL)= urn 0 9*(Lli) , V-l,2,

t 4M V0 IV

Hence using (75) in lemma 2.5 we get (72) and (73).

Using (76) in (70) and (71) we have for v=l, 2 :

)a,,(1-Xac-Xa 2) wW7) zlim e e•(•) E :_' j1 r °lj (0)

Theorem 4 in Appendix B gives:

Ej 0 r~ (O)=i+ `Xl-J=2-

(78)

Substitdtnof (78) in (77) proves (74).

Theorem 2.7

If e(t i) is the probability that the server is busy

at time t, given that the service started at tuO with i > 0

customers in unit 1, then the Laplace transform 8"(ýIi) of

*(t i) is given by:
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(79)

imjlo ij

m lM r (Q) 1 1 - jthQ
0 j

Further the stationary probability that the server is

busy is Xoý + a. and hence the sta~ionary probability that

the server is idle is 1-XI- Xc2.

Proof:

We have:

(80) e(t i) = el(tli) + 02(t i)

which gives:

(81) 9 Mi)= O +I + e (•i)

Hence (79) follows from (81) and lemma 2.6.

lir e(t i) lim e1 (tli) + lir e2 (tji)

(by leue 2.7)

Expected length of a cycle of tasks. Starting with J > 0

custmers in unit 1, the expected duration of a cycle of tasks is:

I I
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" - = - --o " (s-h-(s-o]
Yj (B1•2

(82)

Expected sojourn time. Consider the Semi-Markov sequence

( %,Tn,n > 0] defined in (1.3). Let Ij be the expected

sojourn time of this process in state J. Then:

1

(83a) I . 5 2-

J (al•a2)
(83b) 11. = ' al ' J ->I ,

where (83a) is obtained from the fact that once the process

reached the state zero, there is a negative exponential idle
1

period with expected duration - and further a cycle of tasks

ratarted with a single cutomer in unit 1 whose expected value

is given by (82). (83b) is obvious from (82).

Mean recurrence time. Let 1i be the mean recurrence time of

state j of the process {OJ. Then:

Y Y'(O), Y(.) defined in (1.1) ,

1(84) X .(l .A01. X27

Let Mij (t) be the expected number of visits to state j by the

process (g.) in (o,t), given that o i, and mi,(s) be its

L.S.T. Then:
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(85) mij(s) =mo(s) • om.j(S) 0 mlj(s),ii, J 1

where omij(-) are defined in (1.30).

This is obtained from the consideration that a visit to j

can occur either with or without an intermediate visit to the

state 0 [Neuts (1969)].

From (85) we get for j > 1:

-1 ns mam (S)
j s-•O

- oj(o) lim s mio(s)s •0

(86) oml(O) -
0

If Pi (t) is the probability that the Semi-Markov process

is in state J, given that it started in state i at t=O,

andpj = lir pij(t) then:

(87) P*0
j

lubstitution of (83), (84) and (86) in (87) yields:

Y o = (1 + Xa ) (1 - xal- Aa) I (l- )a,

and

pj- (�X(a )(lct)--a 2 )j o.j(0)o I(I-ar), j > 1,

Pi

1!
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7. Generalizations

The Tandem Queue With More Than Two Units

Let us consider m(> 2) service units. The input to

unit 1 is a Poisson process of density X, and the input to

the (r+l)th unit is the output from the r-th unit,

r=l,2,...,m-1. After getting service in the m-th unit the

customers depart from the whole system.

At t=O a single server starts serving in unit 1. He

switches from unit 1 either by a zero switching rule or

by a non-zero switching rule, while he always observes a

zero switch rule in all other units 2,...,m. In all the

units the customers are served by the order of their arrivals

and the server is busy as long as there is at least one

customer in the whole system. Service times are assumed to

be mutually independent positive random variables and

independent of arrival times.

Each cycle of tasks consists of m tasks, task-l,...,

task-e, and each busy period consists of a random number of

such cycles.

Let Hl(.),...,Hm(.) be the service time distributions in

unit 1,...,unit m respectively. The distributions of busy

period and virtual waiting time and queue length are obtained

by replacing H2 (.) by H2 (.)*H3(.)*... *Hm( ) in the results of

two units. The corresponding moments are obtained by replacing

m M-1 M
a 2 by 1: a i and a2 by 1 L E E cg i "

i=i2 -2 Jui+l
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where a xdlI (x) and =3 V ~d x), V=l,,...M
0 0

Infinite Tandem Queues. Suppose that the number of service

units m is infinite. Let S be the service time of a customerV

in unit v, v-l,2$...... Then 81$82,... are independent random

variables with distribution functions Hl(-), H2 (. ),...

Thaorem 2.7. Convergence Theorem

(a) If a = a av and E - £ B. < then the distribution
v=l v=1

G (.) of the service time of a customer in the first m units,
3
3, + ... 4 Sm, converges to a probability distribution G*(')

with first and second moments a and 0 respectively.

(b) The total service time E S of a customer converges in

law if and only if for a fixed c > o the three series

(i) E dH(x), (ii) a and (iii) converge,
n-l c C n n=1

where (c) = n c x dn(x) and c) c 2 dHn(X).
00

For the proof of this theorem we refer to Feller (1966).

If the service time distributions are negative exponential,

H - , v=l,2,..., then by the convergence theorem the

distribution of Sl+...+Sm converges to a probability distribution

G*(') if ; 1 < W. G*(t) gives the probability that a

custmer will be served in infinitely many units before epoch

i -t.
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Under the conditions of convergence we have:

P(1 S VxC 4 'A * H (x) I

which is the convolution of H1 (.), H2(.).

Hence the distributions of busy period, virtual waiting time

and queue length are obtained by replacing H2(.) by

S*H (.) in the results of two units.
v=2 V

Equilibrium Conditions of the Infinite Tandem Queues. Under the

conditions of convergence of the total service, time of a

cvtomer, the queue will attain its equilibrium if

I-A E 1 V > 0. This follows from the results of an MIGI1
v=l 1

queue with service time distribution ff * HV(x)
V=I

The Tandem Queue with Balking

Consider the tandem queue with two units. Let p be

the probability that a customer joins the queue in unit 2

and 1-p the probability that he leaves the system after

gettin-g service in unit 1. The distribution of busy period,

virtual waiting time and queue length of this model can easily

be studied from the following consid rations: We assume that

all the customers after getting service in unit I go through

unit 2 and get a non-zero service there with probabiliity p

and a zero service with probability 1-p. The distribution of

service time of a customer entering unit 2 is:

H

i _ _ _
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(88) p H2(') + (l-p) u(.)

Hence the distributions of busy period, virtual. witing time, etc.

can be obtained from the non-balking case by replacing H,(.)

by (88). To get the moments, a2 is replace4 by p a2 and 02

by p p2.

In the case of the tandem queue with m service units,

let Py t! the probability that a customer joins the queue

in unit v+3 and 1-p. the probability that he leaves the system

after getting service in unit v, vHl,2,...,m-l. Iere also

we assume that each customer after getting service in unit 1

goes through all the remaining (m-l) units and gets a non-zero

service in unit v with probability ( x pi) and a zero service
V-1 i-.

with probabilityL -l " (X Pj ) 'vu ... ,m. The distribution

of service time of a customer in unit v is:

-I V(89 ( l)H) 1÷[ Pl) U(.)

Hence the different distributions of interest can be obtained

from the non-balking case with m service units by replacing

H(') by (89), v-2,...,m.

8. Applicat.ons

The tandem models considered in Chapters I and II can

be viewed as a modified alternating priority model. In the

alternating priority model [Avi-Ttzhak, Maxwell and Miller (1965),

I. . ... . . . . . .. . .. . . . . . . . .

:1
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Neuts an,! Yadin (1968), Taklcs (1968)] customers az'rive at two

&ervice units, unit 1 and unit 2, in accordance with Poisson

process of densities X1 and X2. A single server attends to

two units alternately according to zero switch rule and serves

the customers in the order of their arrivals. In this

alternating priority model suppose that the input to unit 2

is stored there as long as the server is serving in unit 1.

Once the servei- started serving in unit 2 the input to it is

shut off and stored in unit 1 until he switches back to unit 1.

As soon as the server switches back to unit 1 the stored input

of unit 2 is released from unit 1 to unit 2. This modification

is reasonable in cases where the arrival of a customer in unit 2

causes service interruption there or in cases where only those

customers of unit 2 who have arrived during the sere-.ce time

of the customers of unit 1 have priority over the customers

arriving in unit . thereafter.

The analysis of this modiftied alternating priority model

can be easily deduced from our tandem model: Customers arrive

at a service system in accordance with a Poisson process of

density X. Independently of others an arriving customer is of

type 1 with probability p1 or of type 2 with probability p2,

where p +P2 Z, I X Xpl, X2 - Xp2 . All the arriving customers

pass through both the units 1 and 2. A type 1 customer receives

a non-zero service in sit I and zero service in unit 2, a hile a

type 2 customer receives a zero service in unit 1 and a non-soro
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service in unit 2. The service time distribution in unit I

of an arriving customer is Hl(.) with probability p, and

U(.) with probability p2, while his service time distribution

in unit 2 is H2(.) with probability p2 and U(') with

Probability pl, where U(.) is the unit distribution. Hence

in our analysis in Chapters I and II we replace Hl(x) by

plHl(x) + p2 U(x) and H2 (x) by p2H2 (x) + PiU(x).
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CHAPTER III

ALTERNATING PRIORITY QUEUES WITH

NON-ZERO SWITCHING

1. Concepts and Definitions

This chapter discusses a queueing model in which a single

server serves two units 1 and 2; the input processes to these

are independent ?oisson processes of rates 71 and A2

respectively. The server attends the two units alternately

according to a non-zero switching rule. He continues to

serve in unit v unitl he has given k services withoutV

interruption there or until the queue becomes empty which-

ever comes first. .k v=l,2, are positive integers, which

are called the switching parameters. The alternating priority

queues with zero-switching (kI=k 2=-) have been studied by

several authors: Avi-Itzhak, Maxwell and Miller (1965),

Neuts and Yadin (1968), Taka'cs (1968).

It is assumed that at both units customers are served

in the order of their arrivals. The service times are

mutually independent positive random variables; independent

of the arrival times. Denote by HI(.) and H2 () the

distribution functions of service times in units 1 and 2

respectively.
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We use the following notation:

h(s) Je dH(x), v1,2 1 H(s)> 0,
0

a = x dH (x), v=1, 2 .
0

2. Distribution of Busy Period

We recall that a task in the time interval spent without

interraption in a unit. A task in unit v is referred to as

a v-task. It consists of atmcst k consecutive services
V

Suppose that at t=O the server starts serving in a unit.

The time required for both the units to become empty

simultaneously for the first time is called a busy period.

If the busy period starts with the service of a customer

in unit v then the corresponding busy period is called a

v-busy period (or busy period of type v), v=1, 2 . Let x

denote the distribution function of type v busy period,

v=i, 2.

The system becomes idle when both the units are empty.

The idle period has a negative exponential distribution with

parameter X1 + X 2. After an idle period a new busy period

starts in the unit in which a customer arrives first.

Remark:

As in Nelts and Yadin (1968), if the unit to which the

server switches is empty then we assume that he instantaneously

2I
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completes a task of duration of zero there and switches back

to the other unit.

Since the distribution of busy period does not depend

on the switching rule, [We.-,h (1965)], it follows from Neuts

and Yadin (1968) that:

Theorem 3.1

If el(s) and e,(s) are the L.S.T of x 1(-) and ,(-)

respectively then:

(i) For every s wtih R(s) > 0, the pair 91(s) and 02(s) is

the unique solution to the following system of equations:

(1) (a)

zI hl(s+Xl+,2 -XiZl-X2z 2 ), z2  h (s+II+X -z

(2) (b) z1 = Y1 (s+X2 -x2z2) , z2 = Yz(s+xl-xlz l )

in the region IZ1I < 1, Iz2 1 _<1, where Y,(') is the L.S.T

of the distributicn of busy period of an M(IG11 queue with

input rate X and service time distribution H(), V =l,2.

(3)(ii) el(o+) = e2(O+) = 1 if and only if l-Xa1-ka2 > 0

(iii) if l-xa,-XQ2 > 0 then the means of K1(') and K 2(.)

are given by:

(4) -01' , -9 '(o+) (_
i a=l-X31 X 2 2 -exa(o+) 2
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3. The Basic Imbedded Semi-Markov

Process and its 7ransition Probabilities

We suppose that at t=O there are iI>) 1 customers in

unit 1 and i> 0 customers in unit 2. Furthermore a customer

in unit 1 is just beginning service. We may also start with

other initial conditions.

Let us define the sequence of random variables t 0 ,tl ,...,

where t =0 and t is the duration of the n-th task. The odd
0 n

numbered variables tl,t 3 ,... are the durations of tasks in

unit 1 and the even numbered variables t 2 ,t 4 ,.., are the

Le(i) (2)
durations of tasks in unit 2. Let be the

number of customers in the system (unit 1, unit 2) at the

end of the n-th task, n > 1 and ( (il,i 2 ). Further let

Sn be a random variable which aakes values I and 2 depending

on whether the (n+l)th task is a 1-task or a 2-task,

n > 1, Co=1. It then follows from the regenerative properties

of the input and service processes that the quadrivariate

sequence of random variables:

(5) Cn' i), 2), tn, n>O 4
is a Semi-Markov sequenc- with state space:

I kor

To study the transition probabilities of the semi-Mlrkov

sequence defined in (5) we de!fine the auxiliary-pobsbility

functions Gn (x) and (X) as:
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(6a) vGi)(x) j U(x) v=1,2,

and for n > 1, vG ')(x) is the probability that, in an MIG1l

queue of input rate X and service time distribution H (.) the

initial busy period involves at least n services, thai, the n-th

service is completed berore time x and that at the end of the

n-th service there are j customers waiting, given that there

were i customers initially, v=1,2.
x e-Y (XVY)j'

()e Vi(J-i+l) d H (y), =1,2,

(6c)

( 6 )j+l -X y ( )I -lr+ l

Let 9i(n) (s) be the L.S.T. of G i x

(7) (sz) = "o (s) z1, ) _<, v=1,2,

V i ~j=O i

Then for v=l, 2 :

(0), Zi
• • s,z) = z

(8) (1l) (s,z) i-l h (s+x X Z)

(n-l) h V(s+X V-x z) (gn) ( n)
(s'Z) V V (s'z) "i(I~

n>l,

!
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The results analogous to lemma 1.1 through lemma 1.5 are

easily seen to be satisfied by the probability functions

CI~) Wx.

Let us denote:

(9) •-(irl2),i " (jlj2), On (010),p, (.l,z2)

Define the transition probability functions:

(10) Ql(i"I4x) p t in--2,•() (2).

( ) "=, •'( ')•W=(,2)= .4 T"ni n- I_ tý-i -2

Ve have:

(1(2)

S('[) -k2u (X•u)-2"i
a(d,•G i (u)e (U 2 2  if J1 -

k~l ku (y)j 2- 2 J2 '2 Z> o,

r=i 1 o 1 O1 0ou e (J1-i)! i (

J2 , i2 Z1

= 0 for all other choices of the indices

except for 1 - 2 a 0,
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-( (13) (k)1d. (k2) ( •u) (z~li
Q2(~x " do 2 Gi2J(u) e (j 1-i1)':

if j >1, j 1 ->I -1 °0 i2 _>1

•o "(r)' "-'u(Xlu)1 1i

= ~ d201 o(U) e (li)
r= 2

if = o>, J, -Zi->° i _>2

i--, •Iu(x) , jfi2 -=J2 -°, i 1 _>1

= 0 for all other indices except iI = i2 - 0

Fori 1 - 0=

(1•) Q%(2•x) = j Q1(1,o; ; x-u) e"du,

210

(15) Q2 (O 8,x) = I if(o,; 2,=-u) J = d1 i

=et 0Qfoal) be the L.s.n. of Q1(i,Lx) and

For~~j j0, 12

q(14•) = q (120,s) z (X , , 1d ,2 ,(15) Q.2(0 j2=0 xje A uXd

r(m ,,(,) t )o (1) e e:o
Let (i,) o (S) be the LST. f:,~iý n
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(17) i('iz~s) z 2 - (k1 )(iZ) q(D• Z2 : gil (s+X2-X2zz,1)

kl-1
+ kE 2;1 j (s+X 2-X2 z2 3 0)} if ii 1 1,

r=i .

"a Z , if il= 0, i2 _>I

. il (k)
(18) q*(iSzs) --=" i 2 ('+ýl'xlzl"2)

2

k -1
+ 29i (S+x 1-x 1z 1,01, if i 2 > l,

r=i2

S= r- 2 2l , ~ 1 xz 1 Oj if i2 = ,i > 1,

0f 1->
1~ 1 -=~i>

q, XJ+Z~s q(1,o; z,,)
(19) (,zs) 2 *

(20) q((o•,s) xq(O,; z2,)

Let Rn(iJ,x) be the probability that a busy period lasts for

at-least n tasks, that the n-th task ends not later than time

x and that at the end of the n-th task 0 = (jj 2 ) customers art

waiting i:i units 1 and 2 respectively, given that the service

started with i customers, i1 > 1, in unit 1 at t=O. Then:

(21a) 1.(1,qX) - Q 1(,jX), i3 _> 1,
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(21b) R~(ij) E E F 2~ (i)Vjx-u)
2n~l(Jtx) V1jl v2=0 'o

dQ (jj U ,n >1

(210) R 2nq(II~x) = ýZ V R 2n1 (.'Jv~x)'u
V1 0I v2= o

Further let r (ij,s) be the L.S.T. of ~i,,x and
(2() r s) J2

(22) =r (js)z z2
1l~ 1 2

Izi < I V ,2

i 1
so that (21) gives:

(23a) r1(i,j,s) =q 1 (i,J,s),

(23b) r 2n1 (iJ,s) = E r 2n(i,vý,s) ql(y,v,ba~),

n > 1, ~1 1,

(23c) r (ibj,s) =E r21 ivsq(,,)
2n ~v1=0 V 2=1 2-

n > 1, i1l 1
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(24a) r (izs) = q(b"s) il 1,

(24b) r n~(iZ E)= r .(iyjjS)ql(v,z~s),
2vyl v 2 n

Sn > 1, i >

00 G

(24c) rn(iz,s) = E r (i,v,s)q(v, s)
12n-

n 1, i> 1

Analogously we jefine Rn(i,Jx) as the probability that

a busy period lasts for at least n tasks, that the n-th task

ends not later than time x and that at the end of the n-th

task I customers are waiting, given that the service started

with i customers, i 2 > 1, in unit 2 at t=O. Re'!alling (21):

(25.) •l(L4,') = %(i•,x), i2 - 1,

(25b) R• n(i,j,x)= E E o 2nQijx-u)dQ2 (v4,u)
2n+l l= v =01o

1 l= 2= 0

n_ >1, i 2 >1,
(2s, c) R'• ! (ix)v-,,u=d.,,pvoj • '

2n"JX)-2n-('x' d •'u

n_> 1, i2_>i ,

Similar to (23) and (24) we get the recurrence relations of the

itranaiorima r(v.l~sJ and -r ~~)of ýR(~~) We see i'
further that!
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(26) Z.n(iJ,s) = ql( )
Y=O v2=1

and
CD.

(27) r (i,j,s) E E q2(ijvs)rn

Vl=1 v2=0

4. The Queue lenath Process

Let us denote by •(t) and Y2 (t) the numbers of customers

who still require some service in units i and 2 respectively at

time t. As in Neuts and. Yadin (1968) we further denote:

(28) 'rl(i.•,jt) =Pj t)=Jlg2(t)=J2

and

(29) " 2(i',t) -P= t)=Jl')"t)=j

where the subscripts I or 2 de•iotes that at t the server is in

unit 1 or 2 respectively.

Let for ,=l,2, 1 (i,b,t) be the probability that at t there

are j = (Jl,j 2 ) customers in units I and 2 respectively, that

the queue is never empty in (O,t] and that the original task

has not ended, given that the service started in unit v at t-O

with i customers.

3-

, - sa 2
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Further let 4(i,.j,Q~ be the Laplace transform of

*(i,j,t) and
V

(30) V r= =0 Vij z Z 2

I= <l 1,= =1 2,

Lemma 3.1

The transforms *(i,z,Q) of ~r(i,j,t) are given by:
V '--V b'

(31)

= [lh(+ 1 +X 2-x 1z 1x2 2) ]

.[l-hl( ~+x-'lzl- x2 z2)]

k-+i -kl k1-
tz 1 -Z h~ (ý+) 1+x 2-x 1 z1-X2 z 2

k -1 v-k kl-

E \z2 1-z 1 .2~ Ah l2lx1 -x2 z2)

-1 4 kv) X22' i

2-1 2 22L-~ *s\A.2 ~j1 2- 1IM2
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Proof:

We have:

(33')k 1-1 j1  (rt ltu cltulJ

#1 qi_ rt E~ E fd 1 G IV(u)e V)

-x2 t (x 2 t) 2

e T- j p [i-i{(t-u)], l2l

(34) ~ k -1 
j2v2

2 2 d G( r ) ( ~ e X ( r- ) X t u l I
r=O 1~ 1

(36)

2 gr - (r),

r=O 1 2 2+XI 1 j 1 2- 2 O) }
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The lemma follows now by simplifying (35) and (36) with the

help of (1.8b).

For r=l,2; v=l,2, let 0rv(i,ý,t) be the probability that

at time t there are j = (jl,j 2 ) customers in units 1 and 2

respectively, that the queue is never empty in (O,t] and that

the server is serving in unit v, given that the service started

in unit r at t=O with i customer-.

In terms of the functions 4 and R we have:
v n

O CO CO t

(37) i (ijt) + F. n- - ("tjt-u)oltl= +ý ~• (- V 1,t-u2=)n1
vi3i v2=0 nlo

dR2n(i,),u), iI a 1

(38) 0i2(i,1 It) = CO C CO 0 (Vj,t-u)

1 = 2=1 n=O o

dR2n-1l(i'V'u) ,il 1 ,

0 0

(39) 0 2 1(i,it) E E- E ' t u)
VI=1 -2=0 n=O o

dR (iVu), i2 ý 1,

2n+1l

(40) 02 2 (ij"Jt) = 12 (i1jt) +

+ E £ý t-u)dR~.(,u),
vi=0 výl n=2o • 2n

i 1,

2-A
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If 0,r(ib •) is the Laplace transform of Or'(ijbt)

and

(41) .1.Xii J2,(4=o j 2::o 0rv(LjO z 2

•1z _< 1, r=1,2, v-1,2,

then formulae (3?) to (4*0) give.

40 o 0

(42) + E E E••( + 0 Z
v =1 v2=0 n=l

(43)(,I (b;{ r i _> v

(43) 012(i2 ) E 2n+1~jj)8 (•VZ{)01=0 v2=1 n=0

1 > 1,

(44) E= Z E rv1 = v 2=0 n=O

i21 2

(45) 2i-);)=2 iz•)SGrn(2)$ • •

+ E E Lr
v1=0 v2 =

1 n-i

i2 > 1

Denoting by n the Laplace transform of v (bý.Jt)

defined in (28) and (29) and
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JlO M2=(46) gv(j 1=0 = V *(., )z '2

!z I < 1, v-l, 2 ,V --

we obtain:

Tneorem 3.2

The transforms of the joint distribution of queue lengths

ý,(t) and 2(t) and the type of the unit served at t are given

by:

(47)
i, ,? i 

x -
(Ql ( ) 1( )°l()2() [ý+X I+X a-xl1 1(F)- 2 2WI)

X1011(iO;X AJ(O,l;ýA)], ii >

and:

(48)
****i ^2

'% i't%'O" •2(b •)+ el Me)• %)+lt+X +2"xle (Q)-X 22(o)j

[Zl(1,o;R"ý) + X20**(o)1;Z•A)] il > 1

where I are given in (h2) through (45).

Proof:

The result follows from the usual renewal argument given

in Chapter I. For a complete proof we refer to Neuts and

Yandin (1968).
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5. Applications

There is a large class of application in which the priority

usignment follows more naturally from the nature of the service

demanded than from the urgency with which the service is needed.

In many practical applications a switch of service from one

class of items to another involves a set up cost or set up

time. The classification of the input items accotding to

similarity of service requirements is hence desirable. The

alternating priority model was first discussed by Avi-Itzhak,

Maxwell and Mille" (1965). They considered the alternating

priority model with zero switching. The model we considered

in Chapter III is the non-zero switching case which Is a

generalization to zero-switch. Although the analysis of the

non-zero switching model is very complicated, it is more

practical. In the case of a device controlling traffic at an

intersectioz4 the zero switch rule allows one stream of vehicles

access to the intersection as long as there are vehicles in

this stream and a steady input of vehicles in this stream

delays other streams indefinitely. A compromise rule is to

allow a certain number kI1 of vehicles of one stream access

to the intersection and then that stream is stopped and

to allow a certain number k2 from another stream, etc. The

optimum numbers k1 and k2 may then depend on traffic conditions.
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CHAPTER IV

A PRIORITY RULE BASED ON THE

RANK3hG OF THE SERVICE TIMES FOR

THE M IG 1 QUEUE

1. Concepts and Definitions

This chapter presents mainly the content of the article

by Nair and Neuts (1969). Here we propose a priority rule

based on the length of service demanded by a customer.

Takacs (1964)discussed a priority queue based on the rankings

of the service times of the customers and obtained the

asymptotic moments of the virtual waiting time assuming that

a customer with a shorter service time has priority over a

customer with longer service time. Here we consider a

different, but related problem.

We first recall a branching process description of the

MIG l queue suggested by Kendall (1951) and investigated by

Neuts (1969). Suppose that at time t=O there are i > I

customers in the queue and that one of them is just entering

service at that time. These customers form the first

generation and their total service time is the lifetime

of the first generation. Customers arriving during the
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lifetime of the first generation, if any, make up the second

generation, with its lifetime, and so on. If at the end of

the first or a nubsequent generation's iiietime there are no

customers in the queve, then there is an idle period at tha

end of which a customer arrives who makes up the first generation

of a busy period.

It is clear that the life time of a generation does not

depend on the order in which customers have been served dur-

ing it. We will study the virtual waiting time for the MIGI1

queue under the assumption that within each generation customers

are served in the order of shortest (or longest) service times.

We will call these policies the shortest processing time (SPT)

and the longest processing time (LPT) disciplines, respectively,

and compare them to the first-come, first-served (FCFS)

discipline. Once the rearrangement is achieved within a

generation, the inconr-ng customers thereafter do not upset

it; hence the question of service preemption does not arise

here.

2. The Basic Imbedded Semi-Markov Process

We assume thnt at t=O there are i > 0 customers in the

queue and that the one with shortest service time enters

service immediately. A sequence of random variables

TT1,,.. .. is defined as follows: TO = 0 and Tn is the time

at which all customers, if any, present at Tn-1 complete

service; if there are no customers at Tn.l then Tn is the

4:
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time a+ which the first customer who arrives after Tn-I

completes service. That is, Tn is the time of s3rvice completion

of n-th generation, if the n-th generation is not empty. On the

other hand, if the n-i.h generation is empty, then Tn is the time

of service completion of the first customer who initiates the

first busy period after time TnI.

Let ý(t) denote the number of customers in the system,

at time t+O, who still require some service. Then the

bivariate sequence of random variables:

(I) [t(Tn), T 1 - Tn, n > 0'

is a Semi-Markov sequence.

We define the taboo probabilities:

(2) (o)
( 0ýj(X = F5ij u(x),

and

n(x) = <x, t(Tn)=J,t(T )/O,=I,2, .. ,n-I

I ,)=. n > I

3. The Virtual Waiting time Process

Consider an MIG11 queue that has a Poisson input with

parameter X and a continuous service-time distribution function

H(.) with finite mean a. We denote by TI(t,x) the waiting time

of a virtual customer arriving at t whose service time is

x > 0, where the MIG11 queue observes an SPT discipline, and

l(t,x) the corresponding virtual waiting time in an MIGI1
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queue with an LPT discipline. Let

(3) Wi(t'xY) =PkO_.< (t~x) _< O•() :i

(4) Ai(t,x,y) = P{O < 3(tx) <y, (,r,x) # 0

for all TE(O,t] j ý(O) i}

Then as in (1.61) we have:

t
(5) Wi(t,x,y) = Ai(t,x,y) + jA1(t-Txy) dM1Qr)

0

+ P{1(t,x) = 0 1(O) = i}U(Y)

Let W*(t,x,s) and A*(t,x,s) respectively be the L.S.T. of

W i(t,x,y) and Ai(t,x,y) with respect to the variable y and

let W. (,x,s) and Ai (ý,x,s) respectively be the Laplace

*ft
transforms of W it,x,s) and Ai(t,x,s) with respect to t.

Further we denote:

(6) H(z) = H- ifO _<z <•x

= 0 otherwise,

and h(s), h(s), qj((s) the L.S.T. of H('), H(.) and Q. \ (')
Si~j 0oji

respectively, and

"(n) C (n)
(7) q (i JSOz) °Oqj (s) , Iz I .i,

J1
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Lemma 4,1

For R(j) > 0 and R(t) >O, the transform A, (i.,xs) of

A i(t,x,y) is given by:

(8) A(,~) ~ n0[h'(§,Z) - h'(,Z')]

where:

(9) z = qsMx[-~)1 751 = hk§+)J(x)C1-hQs))}

and

(10) h(,z) 0 z, hn(t,z) = h[l+,X-Xh nl(§,z)], I > 1

Proof:

We have:

(U)

rt ; t 0 j 0.Ai(t,x,y) =o3 j Z Z o j (u•'~vu

(u)(v) n0o j=l 
Vo0

k ) Hk (x)[l-(]k (y-v+tdk (J)(v-u)

where 9(.) is defined in (6), H(m)(.) and HVm)() are the m-

fold convolutions of H(-) and 9(.-). The probabilistic

argument to get (11) is the fcllowing: If the queue has

never become empty in (O,t], let the last beginning •.f the life

of a generation occur between u and u+du and let there be J

individuals in that generation. Let the end of the life time

of that generation be between v and v+dv (v > t). In the
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interval (u,v), v > 0 customers arrive, and they have priority

over the virtual customer if and only if their service time

does not exceed x. If there are k such customers, 0 _< k < v,

then the distribution of their total service time is H

The formula (11) is obtained by using the independence

properties L.,d summing ever all allowable values of n, J,

v, k, u and v.

Taking the transforms of (11):

(12)

A, (t,x,s) e i~t J E ij(~0 n= J=1 ~
(u)(V)

•dv HO) (V-U)

(13)

_-(n)

n=O J=O

-hJR[+XH(x) (l-W(s)) ]}

1i q (n) (n),•Z

n:O to 0% Mz)

where Z and Z' are defined in (9).

Now the lea follows from lemma 1 in Appendi- C.

F
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Theftem- 4.1

For R(s) > 0 and R() ? 0 the transform W (ý,xls)

of the distribution function of the virtual waiting tiie

1(tx) is giver by:

C•4• ~~C wi i••.- •[lI,
(14) W, (§Px,$) = 77s7 E h n z) -" hin('Z')

n= o

+ +Y~[ (E,"h ( 9 ~

wht.e Z and Z' are. given by (9) and hn(.,.) by (1O).

Proof:

Taking the transform of (5j ..e get, as in Theorem 1.2,

that:

(15) W1 (§,x,s) = A (§),xSa + T+X-

The theorem now f flows frem lemma 4.1.

Limiting Behavior o, Virtual Waiting time Process

Let W(x,y) = lim Wi(t,x,y). The existence of this
t -j

%iting distribution can be demonstrated as in Theorem 1.3.

Theorem 4. 2

The L.S.T. u(x:&) of the limiting distri~bution W(x,y) of

the vrztual waiting time •(t,: ) is given by:

(16) Uý(xs) (0-I.Ji -th'F,'' 0 } AS 11v2>0,

0 otherwise,
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where h n(.,.) are given by (iO) and

(17) Z = hks+XH(x)[1-R(s) I 2 h {AH(x) [-()

Proof:

Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:

(18) w(x,s) = (1-xa) [l + X A, (O,x,s)] if 1-x a > 0

= 0 otherwise,

Substitution of lemma 4.1 in (18) proves the theorem.

Taking the limit as s -: 0+ in (16) we observa that

w<x,O+) = 1.

The Moments of the Limiting Distribution

We use the following notation:

=O u2 dH(u)
0

x

aBx = u• dH(u),0

~x = r u2dH(u),
0

Y x = r t13 adH(u) ,
0

and

(19) ~n(x's) : hn(OZ) - h(O-Z)

.1n



where Z and Z are given in (17).

In terms of the functions rA ' formula (16) yields:
OD n(Xs)}

(20) w4Xs)S= (1-xcr) ti - x E n(Xi

n=O

By lemma 3 in Appendix C the series E 4n(xs) is dominated
n=1

by a convergent series if 1-k a > 0. Hence by Lebesgue

dominated convergence theorem, term by term differentiation

gives:

1 (n'(x,s) (X,S)

(21) - TWxs)i N(-) 2
)= n=O ssO

Applying l'Hopital's rule twice we get:

(22) - w(x,'s) I 2 ,n(X,O)

"s s=O 2 n=0

where the number of primes denotes the number of derivatives

taken in succession with respect to s. Similarly:

(23) 2 3s o = )(xO)

6s s=O n=0

From (19) we have for n > 0,

(24)

*;(x,o) h"(0,)[ 2 .4 h'(Ol)[ J
+7 

-
i s-
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3 3
(25) •n(xO) = In" .Js- 0o

3h(I IZ I-sl=O
n aB2S3hn(O,)[�z3 3i,

+ h'(O,l) a z 6~

Further it follows from (17) that:

a- (i + ax)

6 Z- = + ,xo y)2 + a

Ts s=O

2-

bsj= •(i 2 •2 + •~

Ts"Js=O a
bzj - (+Xax)3 Xapx+, )

?s3 s=O .!

__] -" Y(c�rX) - 3X ( Xv2 x '

0s 3XOOx a

T3 x

Substituting these calculations in (24•) and (25) and summing

over n with tle help of lemma 2 in Appendic C we obtain:

cc 0( 2X or

(26) E '(xo) ( 0 2
and (l-X)(l-X r)

and'
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(27) E 3(x,0) 2 3WX + (1-X 3•a3 )
n=O (n-')(l-X a )

(1+3Xx+3X 2 2 )Y(-X• 2 2 )+3X 2]}

Let MP(x) and V,(x) denote respectively the first and second

moments of the limiting distribution of J(t,x). Substitution

of (26) and (27) into (22) and (23) respectively leads to:

X 0(1. + 2X
(28) M.(x) =

-3 2(l X2 a2)

and

(29) V (x) =3 • 3 x + (i-X3a3)- (l+3Xa + 3X2 a)

3(1-X~a)2

rYl~ 2 2)3 2  ~21

4. The Longest Processing Time Discipline

In the longest processing time (LPT) discipline, within

each generation the customers are ordered according to their

length of service times, with highest priority going to the

customer with longest service time. The virtual :aiting time

process of the present case can be treated as in the :ase of SET

discipline. As we have denoted ý(t,x) is the virtual waiting

time of a customer arriving at t whose service time is x > 0

in the case of LET discipline. The Laplace-Stieltjes transform

of the limiting distribution of 7(t,x) can be obtained as in

(16):
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(3) i-a)3.- ChO,)-h(&j} for 1-)a > 0,

where

(31) = h(s + X[L1-H(x)] [1 - (s ,

C= h(X[l - H(x)] [i- [1 (s)],

h(.) is the Laplace-Stieltjes transform of

and

IH(z)-yx ,if z >x(32) H( z) 1 - H(x) i

= 0 otherwise

The first a.nd second moments of the limiting distribution of

j(t,x) are obtained from (30) as:

xD(O + 2 x a*)
(33) M(x) 2

2(1 -X )

and

() -(x) 3 {ji3 + (14 3.a 3 )-(1+3Xa*+3X 
2 a* 2)

(34) V 3(-X2 U) x x

[Yo-_X2 22 + 3,2X -

where

x C1x Ix 6x

5. Comparison of the SFT, LPT and FCFS Disciplines

Let T(t) be the virtual waiting time of a customer arriving

at t in an M IG Il queue with FCFS discipline and let N be the

mean of the limiting distribution of TI(t). Then it ii known that:



118

From (28), (33) and (35) we observe an interesting relation-

ship among M (x) , M(x) I and N:

(36) 1ý [iM() + (l

Also,

(37) M-(x) < < . (x) if and only if a<

Again, 1ý(X) and N(X) are random variables with respect to X,

which has a distribution function H(.). If we denote by Ex

the expectation with respect to the random variable X, then:

E~ M (X) M M(x) dH(x)

(38) [1 + 2)ka.- 2X 1cu H(u) dH(u)]
2(-1 2 a) o

and

(39) Ex M(X) = x )[1 + 2X . u H(u) dH(u),

X 2(l-x a0

In particular if H(x) - e-P, x > 0, then:

(4o) E x 2(x) _p(2+p)

( 4E 1) E X ___

and

(142)P Mil) ýL( -P,
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x
where p is the traffic intensity - Hence in the case of an

MIMIl queue:

(43) E xM I(X) _ E•_•x Mý(x),

Further examination reveals that:

(44 A• +---T-ax ) M,

That is, the steady state expected virtual waiting time under

SPT rule is obtained from the steady state expected virtual

waiting time under FCFS rule by multiplying with the factor

(1 + 2X ax)1 (1+ Xc) which increases monotonically from

I/(l +Xa) for x = 0 to (1 +2Xa)/(l + ýz) for x -. The
1

factor (1 + 2•x)/(l + %a) > 1/(1 + Xa) > , since Xa < 1

by the steady state condition. Hence:

M•(x) >• 1 for all x > 0,

and Mb(x) 1 141 as Xa t 1 and for small x. Again,

(1+2Xax)/(l+Xa) < - ) -/(i+) < 3 which implies
l+XCX l/l2a

that:

M3-(X) < M~ for all x > 0,

and M.(x)t i as Xa t 1 and for l&rge x Thus:

2.

Similarly we observe:

U __ ___ ___ ___ ___ ___ ____ ___ __ ___ ___ ___ ____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___
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1 2 X
(4f6) M-j(X) (-, X3x ) M1

If we draw the graphs of y = M.'.,(x) and y = M(x), then it

is easily seen that they are symmetrically situated on either

side of the line y = M. Hence whenever 14_(x) satisfies

Y: l1<.

Iý L

Figure 3.

The Comparisoi. Graph

the ineqimlity (45) (x) also satisfies the same inequality

but realizes in the reverse direction. They are concurrent

with M, when ax 2. This ir graphically shown in Figure 3.
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6. A Renewal Argument

Equation (11) can be written as:

(4T)

Aj(t P~y)= E 0R , (4u.) H(J(dz) . e V,

oj=l o j t-u V-0

V],-k--.(k) t__Z
X(") H&k(x)L1-H(x)) H (ty-)

k=O

which is obtained by replacing v-u by z in (11) and defining

Z Qi n)(t) = R..(t). oR' (t) is the expected number of times
n=O 0I j 0i

state j is entered without visiting the state zero in [O,t],

starting at state i. Defining:

(48)

t -U y ( ) c X z ( X z V v k ~ xF (t-uxy) = J)(dz+ ) z e . (v) H )
t - u "'0 • k -O

[i- H(x)]T H • (t+y-u-z)

we rewrite (47) as:
t G

(49) Ai(tx'Y) E Ri (du) Fj(t-u,x,y)o(i j l3

(49) together with (5) gives:
t C

(W. (t,x,y) E R. (du)F.(t-u,x,y)

+ Al(t-T,x,Y) d14l(T)

0

+ Pffl(t,X) 0 VO)~o ii U(y)
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By Smith's Key Renewal Theorem (Theorem 4, Appendix D) and

lemma 1.8:

(51) W(x,y) li W. (t,x,y)
t -j

E L F (r,(T)Xd¶ +o j=1 o0. 0j••yd • •••yd

+ (i-xa) U(y) , if 1-X a > 0

0 otherwise

where po is the mean recurrence time of state j without

visiting state 0 and p is the mean renewal time of the general

renewal process formed by the beginning of busy periods.

From (1.52) and (2.86):

-1 -l ~ l•
1. 0 and p =X(1-xa)

Hence further simplification of (51) gives:

(52)

W(x,y) z(l-Na)tU (y)+X E 0 R 1 .(i J F Qr(x,py) dTr

if l-Xcz > C,

= 0 otherwise,

rii
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7. An Exact Comparison of the Waiting times

Under Three Priority Rules

A number of compariscr.s between SPT, LFT and FCFS rules

were carried out in the earlier sectiona in regards to expected

waiting times in the equilibrium state. Many questions which

involve more than expected values may be asked however and in

order to answer t.iem an exact comparison of the waiting times

as random variables needs to be made.

We may "visualize" the definition of the three random

variables T(t,x), ý(t,x), 1(t) on a common probability space

as follows. Imagine that a customer joining the queue at time

t consists of three identical parts 1, 2, 3 all requiring a

processing time x > 0. Part 1 waits in front of a server operating

under the SPT rule, part 2 in front of a server operating under

the LPT rule and finally part 3 waite in front of a unit governed

by the FCFS rule. Then TI(t,x), ý(f ) and ,11(t) are the waiting

times of parts 1, 2 and 3 respect !ly.

Ar. Auxiliary Calculation

Consider the time points t and t+tl, t > 0, t' > 0. The

probability that during the interval t, j customers arrive

whose service time is less than ,, j 2 whose service time is

greater than x and that during (t,t+tt) J, anu j4 arric.. with

service times respectively less and greater than x is given by:
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(t.-) \t Xt CtH~x)] .1 rXt 111x) J3  %[.x3 J(53) e-k..t I l [t. H -• {t1Hx

'l J3" J2:

[Xt'[1-H~x)]} j4
, j)".

We assume that x t a noint of continuity of H(.) so that

the probability that one or more customers have service time

exactly equal to x is zero.

Let Ui and 52 be the total service time of all customers

in (O,t) with service time respectively less and greater than x.

Similarly U and U' are the corresponding quantities for the

customers arriving in (tt+t').

We define W(t,t' ; X1 ,X',X3,x 4 ) as the probability that

for given t > 0 and t' > 0, the random variables *, U0I I3)

U' satisfy:

u_5 x U.'_< x2, U'53 u<<x x

It follows from (53) that:

(54) W(t,t';xl,x2, 3,x 4 ) = E E E 0

SJl= 0 J 2=0 j 3=O j4O

il [t U •)I J2

Ixt 11-H(x) J,4 -'0J) --03) )JJ2)(x?)#J4)

H (x1 )H (x3) (xT)
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where 17 and i are defined in (6) and (32) respectively, Upon

taking Laplace-Stieltjes transforms:

(55)o. W*(t't ;s1)8sZ s s) CO CO 00 CO to 1 - -6

W(t ,t ';0lJ1 ,x3,xe

d Xl,...,)x W t t ; 4.) 3 x.

we obtain:

(56) W*(tt';sls 2 ,s 3 ,ss4) E E E E =0 et
il=O j 2 =0 j 3 =0 j 4 0

[•Hxil , J3 (X~-xjj , X UHx J4INt~x' IIL x)] t
ii J3 J 21" J4"

= exj- xt-xt '+XtH(x)X(s 1 )+Xt [1.-H(x) )h(s.)

+ \t 'H(X)Z(8 3 )+Xt '[1-H(x) SO}

We now return to an MIG ll queue, which we consider at time

t. We define the following five random variatles. U. is 0I
the length of time beyond t until the generatior of customers

in service at time t completes its service. U1 and U2 are

respectively the total service times of the customers with

processing tires less than and greater than x who have joined

the queue since the beginning of the service time of the current

generation and before t. U3 and U4 are respectively the total

I,
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service times o•' the customers with processing times less

than and greater than x, who join the queue during the time

interval (t,t+Uo).

If at time t the server is idle Ull the five variables

are zero.

We shall express the joint distribution of the waiting

times J(t,x), ý(t,x) and J(t) in terms of the joint distribution

of the random mariables U j, J=O,...,4.

The Joint Distribution of Uj, J=O,..., 4

Let oRi(t,x 0 ,x 1 , X2 ,x 3 ,x 4 ) be the probability thab in

(O,t) the queue has never become empty and that the variable

UP, J=O,...,4 associated with the time point t satisfy

Uj < xj, J=O,...,4, given that, at t=O there were i >1 c.Istomers

in the queue, one of who was beginning his service at that time.

Mhen: ODX 0
OnT) oRi(t,X1Ox2,x3,xx 4 ) = o E d (n

n=O v=l 0 0

(t') C()

. W(t-rt ';xlx 2,x3,x 4 )

The probabilistic argument for this is the following: At

some time . prior to t, the generation in service at t enters

service. There are some number v > 1 customers in it, so

that the duration of the total service time of these v customers
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has as its distribution the v-fold convolution H(v)(.) of H(.).

If Uo < x must hold, then the total service time of these v

customers cannot exceed t+xo. The other requirements U1 <xi,

U2 < x 2 , U3 < x3 U 5 X accolut for the factor W(t-r;

t~xl,x 2 ,x 3 ,x 4 ). The probabilities are defined by (2).

Taking L.S.T. of (57):

(58) Ms ( J8oljs2S E O) e- 9t fO I b CO W
0 03'4)a 0 0 00 00I

-8 X o- X -8 X -s

d oR. (tx X 1?,XXx4)

and recalling (56), we obtain:

(59)

R 'sj 3 s) oqn

o0 i (9,So, t,2,ss) 3)zczn(•, 1V ...ex tl-Xt1
n=Ov=lo av 0

(tl)(x)

"-Xo-o"'o +XtH( x)V(Bs )+,Xtll -:( x)3S'(02)
+ LXoH(X)9(s3)•o q -Hx h ( s4 ) (v) (t ÷xo)dtl

0•S~.x 3 _1-(x3: 64)-1o

E 7 h i• [\. s ]- X -(x)Z ~ 3 •.()-X(-,x•R'3 )3)

naO

(n) h
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(n)in terms of the functions o (ý,) defined in (7).

Next, let Ri(t,x 0oXl,xz,x 3,x4) be the probability that

at time t, the random variables TU' associated with t satisfy

Uj _< xj, j=0,l,2,3,4, given that at t=O there were i customers

in the queue.

The standard regeneration argument as in (1. 38) leads to:

(60) Ri(t,xoXzx 2 ,x 3 ,x4) A 0Ri(t,Xoxi,x2,x 3 ,x4)

+ 0 o l(t-u,:01x 2 ,X 3 ,x4) dM1 (u)
0

+ P(ý(t)=o I g(o)=i] U(x1,x. . 3 ,- )

where:

U(x 1 ,x 2 ,x 3 ,x4) =:i fxj > 0 for all j1,2,3,4

= 0 otherwise.

Upon taking transforms in (60) we obtain as in (15):

(61) Ri (Ms0 In,s 2 a,3 s4) = oRi (ý,s ,sz,S 2,Z 3 ,sj)

+ 0( R~.x( 1  0i~ 1 )4

When 1-Xa > 0, the existence of a joint limiting distribution

for Uj, j=0,1,2,3,4 is guaranteed as in Theorem 1.3. Further

when 1-Xa < 0, Ri(t,Xo0 x1 ,x2 ,x 3 ,x4) tends to zero for all i and

xJ > 0, j=O,... ,4. Since the limiting distribution exists when

1-Xa > 0, its transform is g.ven by:
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(62) R* so ss ) = iM a 1 ( so's' 3)s4)

=((°-Xa) l+X 11 (O+,s 81382)0

The Joint Distribution of I(t,x), qI(t) and j(t,x)

The random variables _1(t,x), j(t,x) and 11(t) are, for each

t > 0, related to the random variables U , j=Ol,2,3,4

associated with the time instant t by:

(63) _1(tx) = UU + U1 + U3

1(t) = Uo + +U2

i(tx) + U0 + U 4

That this is indeed so, we argue for,_3(t,x). The other cases

are similar. Consider a virtual customer with service time x

arriving at time t. He has to wait until all customers of the

present generation, if any, have been served. This is a length

of time U • Next, in the next generation, all customers with0

service time less than x are served ahead of him. Regardless

of the actual order of service the total amount of processing

time required by all customers with service time less than x

is Ul + U3. U1 is the processing time of those who preceded

him and U3 that of those who succeeded him in the arrival

sequence. We have:
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(64) V",t,x) + I~(t) C2 + ý-(t~x)

. (Cs, 2+ý3) u0 + (3+{) u: + (2+c3) 02

+ Cu3+ %3 ,

which implies that:

V1 21 C2 C3

where Ri .)s given by (61). Formula (65) shows

how the joint distribution of _f,(t,x), f(t) and ý(t,x) is

relatel to the basic parameters of the MIGII queue.

The Limiting Joint Distribution. The Limiting joint distribution

of the th-.ee virtual waiting times is given by its Laplace-

Stielejes transform;

(66)

3 (1 4a..) is 0gven by

where OR , , is given by (59).

Moments of the Limiting Distribution of Basic

Variables UJ, j=O,1,2,3,4.

Let us denote:

[ 0 (,,122,3,sa), (0,oooo)
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(67) e ,9(xV

80 +,f* o -(x) 6 (81 ) .R ,( +. H( x)),•

(68) y

- h[X+,-(x)Z(e ).X(1.H(x))(

(69)

: hn(O,Y) h (0,7), >0 ,

where the functions h(.,.), n > 0 are defined in (10). It

followe from (62) that:

(70 ) R * ( ,) = ( -n) { - [o( on )

ni=0

(similar to equation (2o))
Let EWU denote the expected value of the limiting distribution
of the variable U, and U the column vector:

U

(71) u
.. z

K Cu)

U 3

U4'

II
- - -
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Since the calculations are lengthy we state the results only.

The matrices of first and second moments are respuctively

given by:

(T2) E axi a -o

a

Xaxa

= Xaxa
ax•

Xaxa

and
2*R

-ab Xaab + X13xa
Sx x12 * .

2 x2  *CI x b -X a% b -ax bWx
,1 2. a.X 2 z *a2÷•• b b X b 2b )X 2 a

2,xb •~ 2 x x x x
* 

2  x b 2 *2 2 X2 2* *

X a.b aax b -2 bxI% C b bcXpx
x *

where ax, ' ax, Ox are defined in section 3 and section & and:

a = u -•!2C-2)
EM- 0 sX/2(1-Xa

2 . x 3a31-1 2, 2 2-2 1
b E oU - k1- ) 1Y.3Xa1(1-1 ar
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That is, a is the steady state expected residual life length

of the generation serving at time t and b-a its variance.

Moments of the Limiting Distribution of

3(t,x), 11(t) and ý(tx)

Let us denote:

J3(t,x) !. 1 0 1 0'

A ,¶P(t) A = 1 2 10 0

ii(t X) '1 0 1 0 1

so that from (63):

A = A Ui

(74) EW A = A(E.

(75) E(A A") = A(E. U') A'

U and E U U' are given by (72) and (73), and sub,%tituting

these values in (74+) and (75) and simplifying we obtain:

(1+2a) •, -

(76) Z A

x
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+ 2X0 a
x

EMAA) 2 C b(l+ka+% a)

3 2 2
b~l XO+ b(l+ 1 a+ !L a b(1+3)a*+3X a)

The Limiting Probability

P[3(t,x) < ý(t)) as t i

Let i,(t,x 2,x 3 ) be the joint distribution of U2 and U3

given t and oAi(t,x 2 ,x 3 ) be the probability that in (O,t) the

queue has never become empty and that the variables U2 and U3

associated with the time point t satisfy U2 < x2 , U3 _< x3 ,

given that at t=O there were i > 1 customers in the queue, one

of who was beginning his service at that time. Then the

renewal argument as in (5) leads to:
t

(78) Ai(tx 2 'x3 ) = oAi(tx 2 'x 3) + foA1 (t-ux 2 'x 3 )dMl(u)

+ p O(t)=o I V(o)-i} u(x2,x3)

where:

u(x 2 ,x 3) 3 1 i •_> 0 and x_> 0

a 0 otherwise

4a
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Further let 0(t,t';x 2 x3) be the joint distribution of U2 and

U3 given t and t ', then as in (54)"

(79) 0(t,t';x3,x 3) E E e-Xt(1-H(x))-Xt 'H(x)

J2=0 j =0

J; J3'(X) (x3
33

Similar to (57) we have:

(80) ~(t~x2 ,x) it d(n) (od ()dH(v) (t+t'.)
(t') (.)

I (t-,r,t';x2, x3)

O t
= E. d oRi,(T) F (t-'x2,x 3 )

V=4. 0

where Ri(.) is defined in section 6 and:

(81) F (t-¶,x2 ,x3) = J dH(V)(t+t'-T) 0(t-r,t';x2 ,x 3 )
0

(t') 4

Substituting (80) in (78) and applying Smith's Key Renewal

Theorem (Theorem 4, Aprendix D) we get the limiting distribution

A(x2 ,x 3 ) of A 1(t,x 2 ,x3) as t4 , as in (52):

(82)
cCO

A(x 2 ,x 3) (l -Xa)tU 2 x 3  E 0 £ (,X, dr
J=l 0

if1 - X'> 0

= 0 otherwise

I



tI

From (63) it follows that:

(83) lim P.3(t,x) <I(t)] lira PIu3 <U 2 ]
t 40 t do

x
S2

S4 d A(x2,X)3)

8. Appi cat ions.

The iain objectives off a priority decision are to reduce

the t~espone time, to •cknc'wledge customer import ance and urgency

of request and to serve in fair order and to limit the length of

S~wait. Yor the best average perfformance the shortest service-,

time-next rule may be just rig•' :. But under thia• rule a. steady

stream of shortest requests may delay a longest requ.est indefinitely.

The rule, picpos•:d in this chapter is a compromise to this, since

within each generation the service request of a customer with

1o• a~rvi~e t~ime is ?•uiifilled. Our model, of course, assumes [

that the service times of the customers can be ordered before :

hand.

0 1

iX
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APPENDIX A

A THEOREM ON SUHMATIOS OF SERIES

Theorem

For a given positive iuteger k, the sum of the infinite

series:

"x n L•- k k 1 k-1 ( ) V )

(i) p Y E k-1 e
n=0 * kU:9Y-I)y

for all x, for all yJ1, and for all integral values of v > 0,

where £4) is the greatest integer not exceeding , and
1 o,are t..e k-th roots of unity.

Proof:

Let us denote.
D xn y En-Tvlk

(2) -(x,y) 2 k

naO

and

(3) 0(cy) u e"X f(x,y) dx
0

Then:

ppose that 0 < v < k-1, then (4) can be written an:



kv1 Zki- I. *Zk 3k v-4
n=O ~ii nnk-v dT nn2k-v =on

k-Ev-1 E, .).) +Y)2k

i k- *1 )+ y (it k.1).for 11+(L+15.

k-v, kv

a k +-v k_1rtyl<8(

Next we consideI r k < v (i) k-1,-),,. In this came:

nzO a

Lv-rkandOkr ]ki

Ey k

rk*k 3rkk~ 1 Y(6) fo 11j

(5-1) (k-
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To find the inverse trarsform we use Bateman (19 59), Tables

of Integral Transforms (p232).

That in., if f(s) :
- where P(s) = u ), ai a r for i • r and q(s)

is a polynomial of degree < n-l, then the inverse transform

of t(& ) is given by:

n ( ax
(8) f(x) = E eM

rml3 M M

where p%(s) .
B-m

Comparing with this we have in (7):

P(s) = (s-1) (ak - Vi)

= (s-i) (s-WY) (s-wy) ... (B-¶k1,Y)

so that a 1, %.z = 0, )o0,i,... ,k-i

ai a • for i4J since y~l by assumption. Where N. 1

are the roots of ýk - 1 o 0

Q( I y[& + y"]r(Y~l

P.(s)u C3_) (8Bk y it)s-a

Pl(%) _ " yk

P( 2 ( 2 ) - (_1-i) yk-(W -• )((U -. L-., ().2- ..

k • .~ -1) 9 ,o•...,-
W U

M
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where the simplification is obtained from the properties of

the roots of the equation z3 -1  O.

Q(cr) 0

, (W.y)V (Y k-), ,iol,...,k-1.

Hence using (8) the inverse transform f(xy) of f(s,y) is

given by:

k+i a() x
f(x,y) = E

x~ 1 m
k-i

This Is independent of r and hence the result is true for all

V 0.5_>o

I

i
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APPENDIX B

PROPERTIES OF THE TABOO PRvEABILITIES

Q(n)(.) FOR THE TA•NEM QUEU WITH ZERO
0 ij

SWITCHING

(The results and proofs of this appendix closely follow Neuts (1969!)

Starting with the semi-Markov sequence ItTn, n n> 0]

defined in (1.3) we define the taboo probabilities onij

as:•

0QO) (x) 8 U(x)

((I) 0  ( Q.j(x) = P[nF J, Tn<-x

and

-(n)x() P PtT,+. .. + < x, ) O2Vlj...qnli =i)

n >1,

Let (n) (a) be the L.S.T of Q4: (4 and
n"'

(2) qi (a)) z 1z Iq
0n 0 xx z ,!z

J=O

Further we dencte:

(3) mi( () >



(14)

It is seen that:

J~. m~(~ i = 1:[ kn(s,z) - (n)(S,o)J

We define the foU~owing sequence of i~.Nctions:

so (s,z) - z

an(s,z) =ytls 2 sXXnl(avz))]

where Y1(.,.) is defined in (1.12).

Throughout this appendix we use the follevwing notations:

eY(O,1) a . Y(OýZ)~

Yl'(O-l N'(O,Z)~

Lemma 1

If 14 Or -Xa 2 > 0 then-

(T) z ..(0,1)~
tlinna a2

and
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a2) 2 -1

2

Proof:

From (6) we obtain.

a•(O,1) = x YI (Ol) a"_(0,1) , n > 1

Successive substitution yields:

(9) a'(011) 2 xa Y~o1) ~0

0'•2 ,n

-cz .n

since Y p(O,1) by (1.20)

Hence (7) follows for < 1.

Similarly differentiating (6) twice and simplifying results

in equation (8).

Lema 2

For R(a) > 0 and i > 1,

(10) (0)(10) q (s,z) = ai(s,z)

q(n) 8,) = a i Z (s(1

Proof.

From (2.3) we have:

.1



i

a a2(s,z)

and

(n(n-i)(12) Sn)[a,~( S~z ,(n-1)( ) q Cs,a (-s,z)J

S (n-1)

= qj (n-) ,o) s
~ S, a2 ,z i

(n+l)(n
(13) oqi (s~z) 0 qiv(a vsz

~, (n) v
o iv 1

- (n) (n)
- O* sIiaz) oqi (8)0)

Setting z z0 in (13) leads to:

q(n) ( n- qfl1)~;**5) (n-1)

Substitution of (12) and (14) in (13) yields:
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(n+l) (n- 0 n - s,a 1 (),)
q (s~z) q -1,,(,~ q(fl ", ]*)~

Successive similar substitution gives:

_nl)(1) (1)[o]
(15) q•n+l)(sz) = o [-.,an(sz)] - q) 'san-l(s,)]

- Yijs,h 2 [s+x-xan(S)z)]1

- Yl[sh 2 [S+X-Xan 1 (,.O)]

- ai+l(S,z) - ai(S,0)

From (IO) and (15) we have:

q(n)(sz) a(s,z) a (S,), n > 1,

For n 0,

(o)( i
q1  (S Z) =z

= (sZ)

Lemm 3

For S > U and i > 1,

(16) rnm an(so) = M10(s) 'Y(s)

n

Proof:

From lemma 2 we have:

( n)(a,z) = an(s,z) - an1 (s,o). n > 1,
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Hence:

N (n)

n=i

The left side of (17) is the L.S.T. of the probability

A,(x), where AN(x) is the probability that a busy period with

one customer initially lasts for at most N cycles of tasks

and has a duration at most x. It can be argued as in Neuts

(1969):

A (x) <A (X) < 1,

a N+l.I

which implies that the transforms aN,(s,O) is increasing in

N for s > 0. Hence by Helly-Bray theorem (Theorei4 2, Appendix D),

aN(s,O) converges to the L.S.T. of a probability mass function.

That is:

nm a•(•o): z (n)(•o

N-# a ) n=l

o0mo(a) = Y(s) bý (1.35)

Lemma 4

If E q ~n(sO)" = Y(s,W), IWI <i,
n=l 01

then:

(18) Ez oq("n)(s,O)Wf Y i(sW), i > 1,
n=l0
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Proof:

Analogous to the proof of lemma 1.2.

Lemma 5

If R(s) 2 0 and .L' _<1, then z - Y(s,w) is a root of

the equation:

(19) z = W Y1 [sh 2(6+X-Xz)) , 1z! 5<1,

Further z = Y(9,w) is the only root of this equation in the unit

circle Iz' < 1 if R(S) 2> 0 and Jlu <1 or R(S) >0 and Iwi <1

or R(s) >0, jwj 1 and 1 - X a, X 2 < 0.

Proof:

Consider the recurrence relation:

(20) q (n1) 0 (n)

o W s = E q() (S)

which gives:

O n+l q(n+l)(s) = 0 0 q(s) £ n q(n)(s)

n=l v=l n=l

= v• l q1 (s) YV(s,w)

(by lemma 4)

(21) W w tq[sY(s,w)] - qlo(s)3

That is:

(22) Y(s, W) = £ uoPlo (n) w ql[s.•(s.•)]

n=l



2.53

- wYl[s,h 2 •÷,-XY(Sw)])

(by equation (2.3))

which proves the first part of the lemma.

The second part follows from Rouch' s theorem (Theorem 3,

Appendix D). For a complete proof we refer to Takacs (1962),

p. 48.

Lemma 6

For R(s) 2 0, z = Y(S) is a root of the equation:

(23) z = Yl(s,h2(s+X-kz)l , I.!l 1

Further Y(O) is the smallest positive real root of the equation:

(24) e YltO, h2(X\.O))

and if l-% - ji a2 <0 then 0 <1, if l-X ol "X a2  0 0 then

Proof:

Proof of the first part is similar to that of lemma 5, by

taking w = 1.

For the second part, the proof is analogous to that of

lemma 2 in Neuts (1969). For completeness we repeat that proof

here, since our functional equation is different from that in

Neuts (1969).

Consider the graphs of:

y x and y Y y1 {O,h 2 (X-xX)l

y-. ~_ _
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and consider the increasing sequence of points whose abscissae

are an(0,0). At the point x = an(OO) we have:

y = Y1CO,hC[-an(0,0)]3= an+lOO

and lim an(0,O) Y(O) which implies that Y(O) is the smallest

positive real root of (24).

If 1-X yI- X a2 <0 then from lemma 5 it follows that e <1.

If l-x a, - X a2 > 0, then the graph of y = Y1(O,h2(X-Xx)) does

not intersect the line y = x in [O,1) so that e 1 is the only

root of (24).

Remark:

From lemmas 5 and E it follows that if 1- a - X a > 0

then:

(25) - Y'(o) = 1 +a2
1a - k a2

(26) Y'(0) = a, a2 +
3

(l-x a1  -1.a)

(27) - Y(o,W)] -'(0,l) - 1 a1
)=0 0-Y a, a2

If 8>0, 0 < z <l and l-Xtl-Xa 2 > 0 then:

(8)a [a(8,Z) a a(8,0)l < 1;[1 - aoo)
n=:l nnn=l n(')

Xa2
•1 c2
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Proof:

The summands an(sz) - an(sO) is a monotonic increasing

function of z and a decreasir. function of a. Hence by setting

s = 0 and z = 1 in the summands we get the first part of the

inequality (28).

It can be shown that an(O,z) > 0 for all z in [0,1], son

that an (O,z) is a convex function in [0,1] and its graph lies

entirely above the tangent at z = 1. This tangent bas an

intercept:

SCn

an(Ol) - a'(0,1) = -

where the value of a'(0,1) is taken from (9).
n. n

Hence an(OO) > 1 - (A.-2 ) which proves the lemma completely,
1X

Limiting Properties of the Semi-Markov Sequence. The limiting

properties of the semi-Markov sequence defined in (1.3) is

studied through the following theorems,

Theorem 1

If lir jsn=j > 0, then pj = 0 for all
n _ CO

j if -X - Xa <0. If l-:l-\a2 0 and 0 < 1, thenI 2 I1)a -Xa- -d0

(29) B(z) .%-3 Z [1.- an(O,0),
jO 0 n=I

where •o is given by:

(30) 1 - i aLn(0O0)i
0 n=O

and 0 > 0 for allj.

* i
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Proof:

The stationarity equations for the imbedded Markov sequence

(~)are:

(31)

rd ()(u) e X(vu) (v-u dH(v)(v-u)
j rar =l 0 = ro 2.

rOi • CO1to j d G-()(V) [X( v -u) i2

+~ c d G (u) e- -U) H (V) (v-u), 0,

The first term is obtained by considering r > I customers

in unit 1 followed by a 1-task and a 2-task. The second term

is obtained by considering an idle pericd followed by a 1-task

and a 2-task. Equation (31) shows that all 8 are strictly

positive if end only if 13 is strictly positive.

From (31) we also obtain:

(Z) = E~ 0 E (O X-)1 2 0 Z) ÷ +o io

r=l

SB(Y1(O,h2(,X-Xz))) - 30[l - Y•O,h2 ,(X-Xz)l]

That is:

(32) B(Y [O, 2(X-Xz)]) - B(z) 0 oih - O (X-Xz)l]
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if 1-Xal-Xa2 <0 then from lemma 6, z = Y(O) <1 is a root of

the equation z = Y (O,h2 (X-Xz)]. Setting z = Y(O) in

(32) we get 1o = 0 wh'ch implies and implied by = 0 for all

j. If 1-XaI-a.2 0> , we replace z in (32) by ar(0,Z)

r = 0,1,...,n-1 and add the resulting equations to get:

n
(33) B(an(O,z)) - B(ao(Oz)) = PO 1 C - ar(O,z)]

r-3l

Letting n anM noting that an(O,z) -" 1 as n --) for every

z in [0,1] we have:

0')

(34) B(1) - B(z) = Z [1 - an(O,z))]
n=1

which proves (29) since B(l) = 1. Finally equation (30) is

obtained by setting z = 0 in (34).

Theorem 2

If 0 < z <l and l-Xl-Xa 2 >20 then,

(35) E , z 3 = 13 zJ=l oj() o jl

Proof:

From (5) we have:
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I co ( n( n

E O'M1J (0) z 1 q 1 [q)(0,Z) 0 qr1J(01)

= E [a (Oz) - a n(0,0)]

= F [1-an(0,o)] - E [.-an(o,-)]
n=l n=l

(This rearrangement is allowed by lemma 7)

: (•I- i- •o~i -B(z)]
0 

0 
c

1 B(z) -1 O= 3 E 0 z0~ 0

Theorem 3

If i >0, O<z <ln and l-,\-c 1 -xc 2  0>, then:

(n)( 1 ~ c
(36) °ql 1,z) <q <

n=l o 1)"

Proof:

For > 0 ani 0 < z < I:

• q (n) (sZ)< (n)
n=]. n=l0

1: 0,0o)

j=O

0,

-1.0° •'; (by Theorem 2
J1
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-1
= 30 , since Z j ,

J=O

S1 + Z [i - an(0,0)] ,by Theorem 1
n=l

ac 2  i a,

1+ 1 2

(by lemm 7)

Theorem 4

If 1 - al a2 > 0 then:

Xa2(3-1) jo'_j(o) al- a
j=1.

(38) T- j(j-1)rn,(0)- 2 (~rk) [1 ~i~ )2]

+~ l 2 2(-Xa -)r

Dl+!2+2 1 -Xa, 2

Proof:

,quations (5) and (10) give:
C-. i C*

(39) E omlj (O) zu = Y [n(0,z) - an (0,0)

j=l ný

Differentiation with respect to z gives:

(40) E j oj (0) = E a(oI)

j=i n=l n

where term by term differentiation is valid by lea 7.

t|
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Similarly,

(41) E j(j-i) omij(O) = Y an(O,l)
J=l n=l

Substitution of lemma I in (4O) and (41) proves the theorem.

V.

Vml'
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APPENDIX C

To facilitate readirg Chapter IV we state and prove the

following lemmas which are essentially in Neuts (1969).

Starting with the semi-Markov sequence

[S(Tn), Tn+1 - Tn, n > 0] defined in (4.1) we define the
taboo probabilities Q (n ) as:

0 ij

Q 0 ) (x) = 5. U(x)

( () Q() Q. (x) = P[k(T )=j, <TxI(To-j "=Qij n Tn+l-Tn - n.)'
#~

and

Q(n)(x) P(Tn I x (Tn)=J,t(T 0

Let qý. (a) be the L.S.T. of Qfn)(x) and0 ij q ij

( n ,~ ) = k n Iz
0 qi ý Z)=-j=0 0 ij sZs

We define the fellowing sequence of functions:

ho(s,Z) = z

(3)

hn( ,z) = h(.h - \ hn-(l,,) , n > 1



Further we denote:

h,01 = L hn(O1z)•
Sh (O,l)=i

z n z=l

f2 h#(O,1) = (O,z)-

iA 3z3:h (0,1) h z

Lemma 1

If 1 - X� >O, then:

l-Xc(4O) E h"(O,1)= -n=('

I where o•, f3 and Y are defined in Chapter IV.

The proof is similar to that of lemma 1 in Appendix B.

Lemma 2

For R(s) > 0 and .i > 1,

(T) qO)0(a ,z) = h(,z)E ( hho (8

Eq h nOz) = hlZ Iz + 3 Xi ' r -n= 3:322
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Again the proof of this lemma is analogous to the proof

of lemma 2 in Appendix B.

Lemma 3

Ife > 0, 0 <z <1 and 1 - X e > O, then:

(8) 7 Chn(s,z)-hn(O,O)) < E [l-hn(00)]
n~-l n=l

1- Xcx

Fir the proof we refer to the parallel proof of lemma 7

in Arpendix B.

For further properties of the taboo probabilities defined

in this appendix we refer to Neuts (1969) where they are

extensively treated.
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APPENDIX D

SOME WELL KNOWN THEOREMS USED

IN THE TEXT

Theorem 1: ZYGMUND'S THEOREM

Let [Fn(x)) be a sequence of distribution functions all

vanishing for x < 0 and let

()n( J i: dF(X), -00 < W < CS(i) : e =
0

If the functions 0n(w) tend to a limit in an interval around

w = 0, and if the limiting function is continuous at w =O,

then there is a distribution function F(x) such that F n(r)

tends to F(x) at every point of continuity of F(x).

[Ref: Zygmund (1951)]

Theorem 2: HELLY-BR.AY THEOREM

If g(x) is bounded and continuous when - • < x < - and the

sequence of distribution functions Fn(x) converges to a

distribution function F(x), then:

(2) lim J g(x) d Fn(x) 1 g(x) dF(x)

[Ref: Loeve (1963)]
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Theorem 3: ROUCHE'S THEOREM

if fr ) and g(z) are regular inside and on a closed

contour C, and ig(z)j < I f(z)l on C, then f(z) and

t(z) + g(z) have the same number of zeros inside C.

[Ref: Whittaker and Watson (1952)]

Theorem 4: SMITH'S KEY RENEWAL THEOREM

If M(t) is the expected number of renewals in (O,t],

Q(') is a pcsitive integrable and decreasing function, then:

(3) Q(t-u) dM(u)-) -1 Q(u) du
0 0

where p is the mean renewal time

[Ref: Smith (1958)]

Theorem 5: A TAUBERIAN THEOREM

If M(t) is non-decreasing and such that

re(s) = st dM~t) converges for R(s) > 0, and if for somejo

non-negative number a, lim sa m(s) c, then:

lim Liýt) a
t "I try 1T+l)

[Ref: Widder (1947)]

'.I
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